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» The approximation properties of the trial space will control (kh)“q.

» But this is not enough to control the error (because of the term k).

v

Usually pollution manifests in terms of dispersion (phase) error.

Dream: to have a method that delivers the L-projection.
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» Problem (2) is infinite-dimensional.
» The numerical approximation of (2) needs to be cheap.
» We want error estimates in the original U-norm.
DPG overcoming:
> The test space V must be a broken Sobolev space.

» We numerically approach (2) using a discrete space V, c V.
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Find ue (U, |- |u) such that:
b(u,v)=1f(v), VveV.

1 (Inyectivity) w — b(w,-) is inyective from U to V'

H
H2 (Inf-Sup and Continuity) There exist v > 0 and M > 0 such that:

LV
vl <sup 2 gy, wvey

wel H H

[vllopt
H3 (Fortin operator) 3 bounded linear operator 1: V — V, such that:
b(wp,Mv-v) =0, Ywy € Uy
DPG w/optimal test functions implies:

M .
lu=wnlv <M= inf fu—wh|u
Y wheUp
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ikp+u =f in(a,b)
iku+p'=0 in (a,b)

u(a) = u,

p(b) - zu(b) = 0

Model Problem

uwve > (- fKU(Ian) fp(lkV+17)+UV\ +pn\ ffn
KeQy

KeQy,

(u,p,i,p) e U:=L*(Q) x *(Q) xC"xC"
Functional Spaces
(v,n) e V= [H'(2)]?
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1D Test norm

Recall that (in the abstract setting)

|b(w; V)|

<M|v|v, VveV. (3)
|wlu

Ylvlv <sup
welU

H‘/Hopt
The optimal test norm is:
2 . 2 . 2 2 2
[(vam) o = likv +1" 0.0 + likn +v'[6.0 + 3 (VI +[[n]]
oK

So we define the V-norm as:

[vmIY = likv + 0[50 + likn+v'[5.0 + |v]5.a + 75,0

Then (3) holds with wavenumber independent M >0 and ~ > 0. Moreover

A s IR M (. .
= =l a8l 1B-pnl3 < T (inf = wali+nf [~ anlin)



1D Numerical experiments
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1D Numerical experiments

n=20,p=1,testp =7, energy error = 0.44632063263, Z = 1.0

I
w

— p(exact)

— mp (L, projection), ||p—mp||,, = 0.319293152457
== ppre (DPG), [[p—pprlly, = 0.320148702097

130
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iku+vVep=0inQ

iké + divu = f in Q + homogeneous B.C.

Model Problem {

We define the “wave’ operator A: H(div,Q) x H(Q) — L*(Q)" x [*(Q) s.t.

A(u, ¢) = (iku+ Vo, ike + divu)

Model Problem Find (u,¢) + B.C. such that A(u,¢) = (0, ).

UWVE 7((U,¢)),Ah(v,7])) +<(a,q3),(n,v-n)> h=(f,v)n

Q le}

U= L2(Q)" x L2(Q) x Trag, (H(div, Q) x H'(Q) + B.C.)

Functional Spaces -0
V = H(div, Q) x HY(Q4),
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The stability result

limdlo=_  inf  |A@z)

o, (z,0)=(Wn,q

0,0

(. ), (v m))

o0
Opt test norm (v, )2, = |Aw(v,)[3a+| sup — :
: | e (W, P) @
So we choose the V-norm as: H(v7n)||%/ = HA,,(v,n)Hg#Q + [ (v,n) HSQ

Theorem: There are constants M > 0 and « > 0, independent of wavenumbers
k > ko, s.t.
VI m v < 10, m) o < M (v, m) [ v

Moreover,

[(u—un, &= dn) 5.0+ (8~ n &~ dn)G

M . N
<— ( inf [(u—wh é—aqn)loq+ inf ||(U—Wh7¢>—qh)H%))
Y (Wh,qn) (Wh,qn)



Error estimation

Conforming p-optimal H'-interpolant (Demkowicz, Gopalakrishnan,Schéberl)

In(p) hs+1

3
[Nt oo +hlV(¥-Mmi)lon < C—=h" W],  s+le(s,p+l]



Error estimation
Conforming p-optimal H'-interpolant (Demkowicz, Gopalakrishnan,Schéberl)

In s 3
- Tstlo AT - Tos)los < € PP 1 ety 416 (3 pe1]

Error estimation (for traces & fluxes of globally continuous polynomials of
degree p + 1)

inf (@ = in, &= &n) o
(Wn,an)



Error estimation
Conforming p-optimal H'-interpolant (Demkowicz, Gopalakrishnan,Schéberl)

In 3
- Tstlo AT - Tos)los < € PP 1 ety 416 (3 pe1]
Error estimation (for traces & fluxes of globally continuous polynomials of
degree p + 1)

inf [[(n— W, ¢ - Gn)o < [|A(u-

(Wn,an)




Error estimation
Conforming p-optimal H'-interpolant (Demkowicz, Gopalakrishnan,Schéberl)

In 3
- Tstlo AT - Tos)los < € PP 1 ety 416 (3 pe1]
Error estimation (for traces & fluxes of globally continuous polynomials of
degree p+1)

At - Wh, = Gn)o < |A(u=Thpu
Wh,qh
S ik(u=Mgpu) + V(P = Thpd) 0.0




Error estimation
Conforming p-optimal H'-interpolant (Demkowicz, Gopalakrishnan,Schéberl)

In(p 3
- Tstlo AT - Tos)los < € PP 1 ety 416 (3 pe1]
Error estimation (for traces & fluxes of globally continuous polynomials of
degree p+1)

inf [[(in— Wh, - n)|o < [A(u-
(Wh,Gn)
S lik(u=TNgpu) + V(& = Nupd) o0

+[ik(¢ = Mip) + div (u = Mppu) o0



Error estimation

Conforming p-optimal H'-interpolant (Demkowicz, Gopalakrishnan,Schéberl)

In p 3
- Tstlo AT - Tos)los < € PP 1 ety 416 (3 pe1]
Error estimation (for traces & fluxes of globally continuous polynomials of
degree p+1)

inf [[(in— Wh, - n)|o < [A(u-
(Wh,Gn)
S lik(u=TNgpu) + V(& = Nupd) o0

+[ik(¢ = Mip) + div (u = Mppu) o0

(@)’
ps

IA

B (lullssn + [ @lsern)



Error estimation
Conforming p-optimal H'-interpolant (Demkowicz, Gopalakrishnan,Schéberl)

In p 3
-t o B (6= < ¢ B L ey s+1eCpel)
Error estimation (for traces & fluxes of globally continuous polynomials of
degree p+1)

inf [[(in— Wh, - n)|o < [A(u-
(Wh,Gn)
S lik(u=TNgpu) + V(& = Nupd) o0

+[ik(¢ = Mip) + div (u = Mppu) o0

In(p)>
NP (Jullei e + [6]ers.n)

where

s+1 3
19200 = 2 K P Wlg),  Ys=1,..,p
j=0
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The e-scaling approach

[ lv.e == [An(v, ) 5.0 + %[ (v,m) 5.0

What happens in the eyeball norm ?

€=0.000001

Re(solution) from DPG

Figure : Numerical traces of a plane wave propagating at angle 7/8



The e-scaling approach

Theorem
Let (@i, ¢) be the discrete DPG solution of fluxes and traces using the

e-scaling approach. If ¢ = 07, then

1(8,9) - (05, 6h) @ — anf (2, 6) = (#h, @)l o
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Dispersion of the lowest order method

Recall that

U= L2(Q)" x L*(Q) x Trag, (H(div, Q) x H'(2) + B.C.)

=Q

Hence, the lowest order choice is:
» Piecewise constants for field variable u (on each element K).
» Piecewise constants for field variable ¢ (on each element K).
» Piecewise constants for fluxes & (on each edge of OK).

» Piecewise linear (on each edge of JK) and globally continuous for traces (;

For the numerical results that will be shown later, the enriched space
approaching V = H(div, Q) x H'(Q4) for the computation of optimal test
functions is

V= {(‘hn) : (V’T])‘K € (Qnrfl X Qrfl,r) X Qr,r}, where r > 2.
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(Discontinuous field variables are condensed out )
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» Plane waves Ae are exact solutions with zero sources.

» We work with the assumption that the discrete solution is interpolating a
plane wave of the type
Aro k%~ o o iky% o~ o ikp-%
p(x) =™ Tp(X) =™, Tp(Xx) =~ve"".
where kj, = ky(cos(0),sin(0)) for some 0 < § < 27 representing the
direction of propagation and «, 3,~ are unknown amplitudes.
» We want to compute k; as a function of the exact wavenumber k, the
direction of propagation ¢ and some of the discretization and stabilization
parameters (kh,r and ).



Numerical results: dependence on 6

DPG wavevectors for propagation angles 0 to 90 degrees

Wavevectors for DPG, least squares, and FEM
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(a) Dependence of R(k,) on e (b) Comparison of methods
Figure :

The curves traced out by the discrete wavevectors ky as 0 goes from 0 to
7/2. These plots were obtained using k =1 and h = 27/4.



Numerical results: dispersive errors p = méalx|9%e(kh) — k|
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(a) Dispersive errors: Plots of p vs. €

Figure : The discrepancies between exact and discrete wavenumbers as a function of
e, when k=1 and h=27/8.



Numerical results: dissipative errors 1 = m@ax|3m(kh)|
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(a) Dissipative errors: Plots of 7 vs. €

Figure : The discrepancies between exact and discrete wavenumbers as a function of
e, when k=1 and h=27/8.



Comparison of three methods
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(a) Plot of |kyh — kh| for three methods
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Figure : Rates of convergence of |kyh — kh| to zero for small kh, in the case of

propagation angle 6 = 0.

Observe that |kyh — kh| = O(kh)*** means |ky — k| = kO(kh)*.
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Figure : A comparison of discrete wavenumbers obtained by three lowest order
methods in the case of propagation angle 6 = 0.
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Conclusions

> As other LS methods do, DPG also suffers from dissipation and dispersion.

» Disperssion and dissipation can be reduced using small ¢ parameter.

» For the same amount of d.o.f, the lower order DPG method performs
badly wrt biquadratic FEM, but much better compared to standard LS.

» DPG is a Least-Squares method, so it has a Hermitian Positive Definite
stiffness matrix.

> In order to be competitive the future approaches must explore hp
adaptivity, solvers and/or plane waves.
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