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Preliminaries ...

▸ Solving the Helmholtz equation by standard FEM is subjected to pollution:

D.E.

B.A.E.
= O(kα(kh)β)

▸ The approximation properties of the trial space will control (kh)β .

▸ But this is not enough to control the error (because of the term kα).

▸ Usually pollution manifests in terms of dispersion (phase) error.

Dream: to have a method that delivers the L2-projection.
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Theoretical ingredients

u ∈ (U, ∥ ⋅ ∥U) s.t. b(u, v) = f (v), ∀v ∈ V . (1)

For each discrete space Uh ⊂ U, define the optimal test space as T(Uh), where
T ∶ Uh → V is determined by means of the equation:

(Twh, v)V = b(wh, v), ∀v ∈ V (2)

Solving (1) - using Uh instead of U and T(Uh) instead of V - will deliver a
solution uh satisfying:

∥u − uh∥E = min
wh∈Uh

∥u −wh∥E , where ∥ ⋅ ∥E ∶= sup
v∈V

∣b(⋅, v)∣
∥v∥V

.

Problems:

▸ Problem (2) is infinite-dimensional.

▸ The numerical approximation of (2) needs to be cheap.

▸ We want error estimates in the original U-norm.

DPG overcoming:

▸ The test space V must be a broken Sobolev space.

▸ We numerically approach (2) using a discrete space Vr ⊂ V .
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Recipe

{ Find u ∈ (U, ∥ ⋅ ∥U) such that:
b(u, v) = f (v), ∀v ∈ V .

Discrete spaces
Uh ⊂ U
Vr ⊂ V

H1 (Inyectivity) w z→ b(w , ⋅) is inyective from U to V ′.
H2 (Inf-Sup and Continuity) There exist γ > 0 and M > 0 such that:

γ∥v∥V ≤ sup
w∈U

∣b(w , v)∣
∥w∥U

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∥v∥opt

≤M∥v∥V , ∀v ∈ V

H3 (Fortin operator) ∃ bounded linear operator Π ∶ V → Vr such that:

b(wh,Πv − v) = 0, ∀wh ∈ Uh

DPG w/optimal test functions implies:

∥u − uh∥U ≤ ∥Π∥M
γ

inf
wh∈Uh

∥u −wh∥U
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The 1D experience ...

Model Problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ikp + u′ = f in (a,b)
iku + p′ = 0 in (a,b)
u(a) = ua

p(b) − zu(b) = 0

UWVF ∑
K∈Ωh

( − ∫
K
u(ikv + η′) − ∫

K
p(ikv + η′) + ûv ∣

K
+ p̂η∣

K
) = ∑

K∈Ωh

∫
K
f η

Functional Spaces

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(u,p, û, p̂) ∈ U ∶= L2(Ω) × L2(Ω) ×Cn ×Cn

(v , η) ∈ V ∶= [H1(Ωh)]2
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K
+ p̂η∣

K
) = ∑

K∈Ωh

∫
K
f η

Functional Spaces

⎧⎪⎪⎪⎨⎪⎪⎪⎩
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K
+ p̂η∣

K
) = ∑

K∈Ωh

∫
K
f η

Functional Spaces

⎧⎪⎪⎪⎨⎪⎪⎪⎩
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1D Test norm

Recall that (in the abstract setting)

γ∥v∥V ≤ sup
w∈U

∣b(w , v)∣
∥w∥U
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1D Numerical experiments
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1D Numerical experiments

0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5
n = 2.0, p = 1, test p = 7, energy error = 0.44632063263, Z = 1.0

p (exact)

πp (L2  projection), ||p−πp||L2
 = 0.319293152457

pDPG (DPG), ||p−pDPG||L2
 = 0.320148702097



2D and multidimensional experience ...

Model Problem { iku +∇φ = 0 in Ω
ikφ + divu = f in Ω

+ homogeneous B.C.

We define the “wave” operator A ∶ H(div ,Ω) ×H1(Ω)→ L2(Ω)n × L2(Ω) s.t.

A(u, φ) = (iku +∇φ, ikφ + divu)

Model Problem Find (u, φ) + B.C. such that A(u, φ) = (0, f ).

UWVF − ((u, φ),Ah(v, η))
Ωh

+ ⟨(û, φ̂), (η, v ⋅ n)⟩
∂Ωh

= (f , v)Ω

Functional Spaces

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

U ∶= L2(Ω)N × L2(Ω) ×Tr∂Ωh
(H(div ,Ω) ×H1(Ω) + B.C.)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Q

V ∶= H(div ,Ωh) ×H1(Ωh),
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The stability result

∥ŵn, q̂∥Q = inf
Tr∂Ωh

(z,ϕ)=(ŵn,q̂)
∥A(z, ϕ)∥0,Ω

Opt test norm ∥(v, η)∥2
opt = ∥Ah(v, η)∥2

0,Ω+
⎛
⎜⎜
⎝

sup
(ŵn,q̂)∈Q

⟨(ŵn, p̂), (η, v ⋅ n)⟩
∂Ωh

∥(ŵn, p̂)∥Q

⎞
⎟⎟
⎠

2

.

So we choose the V -norm as: ∥(v, η)∥2
V = ∥Ah(v, η)∥2

0,Ω + ∥(v, η)∥2
0,Ω.

Theorem: There are constants M > 0 and γ > 0, independent of wavenumbers
k > k0, s.t.

γ∥(v, η)∥V ≤ ∥(v, η)∥opt ≤M∥(v, η)∥V
Moreover,

∥(u − uh, φ − φh)∥2
0,Ω + ∥(û − ûh, φ̂ − φ̂h)∥2

Q

≤ M2

γ2
( inf
(wh,qh)

∥(u −wh, φ − qh)∥2
0,Ω + inf

(ŵh,q̂h)
∥(û − ŵh, φ̂ − q̂h)∥2

Q)
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∥ŵn, q̂∥Q = inf
Tr∂Ωh

(z,ϕ)=(ŵn,q̂)
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⟨(ŵn, p̂), (η, v ⋅ n)⟩
∂Ωh

∥(ŵn, p̂)∥Q

⎞
⎟⎟
⎠

2

.

So we choose the V -norm as: ∥(v, η)∥2
V = ∥Ah(v, η)∥2

0,Ω + ∥(v, η)∥2
0,Ω.

Theorem: There are constants M > 0 and γ > 0, independent of wavenumbers
k > k0, s.t.

γ∥(v, η)∥V ≤ ∥(v, η)∥opt ≤M∥(v, η)∥V
Moreover,

∥(u − uh, φ − φh)∥2
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Error estimation

Conforming p-optimal H1-interpolant (Demkowicz,Gopalakrishnan,Schöberl)

∥ψ−Πhpψ∥0,Ω+h∥∇(ψ−Πhpψ)∥0,Ω ≤ C
ln(p̃)2

p̃s
hs+1∣ψ∣Hs+1(Ω), s+1 ∈ (3

2
,p+1]

Error estimation (for traces & fluxes of globally continuous polynomials of
degree p + 1)
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The ε-scaling approach
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0,Ω + ε2∥(v, η)∥2
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Figure : Numerical traces of a plane wave propagating at angle π/8
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The ε-scaling approach

Theorem
Let (ûεh , φ̂εh) be the discrete DPG solution of fluxes and traces using the
ε-scaling approach. If ε→ 0+, then

∥(û, φ̂) − (ûεh , φεh)∥Q Ð→ inf
(ŵh,q̂h)

∥(û, φ̂) − (ŵh, q̂h)∥Q



Dispersion of the lowest order method

Recall that

U ∶= L2(Ω)N × L2(Ω) ×Tr∂Ωh
(H(div ,Ω) ×H1(Ω) + B.C.)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Q

Hence, the lowest order choice is:

▸ Piecewise constants for field variable u (on each element K).

▸ Piecewise constants for field variable φ (on each element K).

▸ Piecewise constants for fluxes û (on each edge of ∂K).

▸ Piecewise linear (on each edge of ∂K) and globally continuous for traces φ̂.

For the numerical results that will be shown later, the enriched space
approaching V = H(div ,Ωh) ×H1(Ωh) for the computation of optimal test
functions is

V r = {(v, η) ∶ (v, η)∣
K
∈ (Qr,r−1 ×Qr−1,r) ×Qr,r}, where r ≥ 2.
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=∶Q

Hence, the lowest order choice is:

▸ Piecewise constants for field variable u (on each element K).

▸ Piecewise constants for field variable φ (on each element K).

▸ Piecewise constants for fluxes û (on each edge of ∂K).

▸ Piecewise linear (on each edge of ∂K) and globally continuous for traces φ̂.

For the numerical results that will be shown later, the enriched space
approaching V = H(div ,Ωh) ×H1(Ωh) for the computation of optimal test
functions is

V r = {(v, η) ∶ (v, η)∣
K
∈ (Qr,r−1 ×Qr−1,r) ×Qr,r}, where r ≥ 2.
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▸ Plane waves Aek(x1 cosθ+x2 sinθ) are exact solutions with zero sources.

▸ We work with the assumption that the discrete solution is interpolating a
plane wave of the type

p̂(x⃗) = αe i k⃗h ⋅x⃗ , ûnh(x⃗) = βe i k⃗h ⋅x⃗ , ûnv(x⃗) = γe i k⃗h ⋅x⃗ .

where k⃗h = kh(cos(θ), sin(θ)) for some 0 ≤ θ < 2π representing the
direction of propagation and α,β, γ are unknown amplitudes.

▸ We want to compute kh as a function of the exact wavenumber k, the
direction of propagation θ and some of the discretization and stabilization
parameters (kh, r and ε).
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Figure : The curves traced out by the discrete wavevectors k⃗h as θ goes from 0 to
π/2. These plots were obtained using k = 1 and h = 2π/4.



Numerical results: dispersive errors ρ = max
θ
∣Re(kh) − k ∣
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(a) Dispersive errors: Plots of ρ vs. ε

Figure : The discrepancies between exact and discrete wavenumbers as a function of
ε, when k = 1 and h = 2π/8.



Numerical results: dissipative errors η = max
θ
∣Im(kh)∣
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(a) Dissipative errors: Plots of η vs. ε

Figure : The discrepancies between exact and discrete wavenumbers as a function of
ε, when k = 1 and h = 2π/8.
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Figure : Rates of convergence of ∣khh − kh∣ to zero for small kh, in the case of
propagation angle θ = 0.

Observe that ∣khh − kh∣ = O(kh)α+1 means ∣kh − k ∣ = kO(kh)α.
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Figure : A comparison of discrete wavenumbers obtained by three lowest order
methods in the case of propagation angle θ = 0.



Conclusions

▸ As other LS methods do, DPG also suffers from dissipation and dispersion.

▸ Disperssion and dissipation can be reduced using small ε parameter.

▸ For the same amount of d.o.f, the lower order DPG method performs
badly wrt biquadratic FEM, but much better compared to standard LS.

▸ DPG is a Least-Squares method, so it has a Hermitian Positive Definite
stiffness matrix.

▸ In order to be competitive the future approaches must explore hp
adaptivity, solvers and/or plane waves.
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