Practical challenges faced when using modern approaches to numerical PDEs to simulate petroleum reservoirs

Halvor Møll Nilsen, SINTEF ICT

Our groups work

- Which subject do we come from
 - Hyperbolic conservation laws
 - (Geometrical Integration, computational geometry, Physics)
- History of the research in reservoirs,
 - From: Complicated methods for simple problems like (incompressible 2phase flow)
 - Discretization: (Eliptic; mimetic, mpfa, Hyperbolic: fronttracking, reordering, operator splitting)
 - Multiscale (Mixed finite element,m Finite Volume.)
 - Streamlines (Fronttracking)
 - To: Simple Methods for complicated problems
 - fast prototyping, model reduction, optimization, EOR
- Software:
 - Matlab Reservoir Simulation Toolbox (MRST)
 - Collection of our research
 - Research tool
 - Fast prototyping
 - Open Porous Media (OPM) C++
 - Platform for implementing methods on Industry standard models

People (Current): Knut Andreas Lie

Stein Krogstad Atgeirr Rasmussen Xavier Raynaud Olav Møyner Bård Skaflestad

Matlab Reservoir Simulation Toolbox - MRST

- An open source comprehensive set of routines for reading, visualising and running numerical simulations on reservoir models.
- Developed at SINTEF Applied Mathematics.
- MRST core: grid + basic functionality
- Add-on modules: discretizations (TPFA, MPFA, mimetic), black oil, thermal, upscaling, coarsening, multiscale, flow diagnostics, CO2 laboratory,....

Statistics: (release 2013b)

- Number of downloads: ~3000
- Number of countries: ~120
- Number og institutions: ~1080

MRST	Modules								
		rvoir Simulatio ational method		") is develope	d by SINTEF Applie	d Matemathics an	d is a result of ou	r research on the develoj	oment of new
model unstru	s, viewers anı ctured grids. I	d solvers. MRS Despite this, m	T is mainly intend any of the tools a	ied as a toolb re quite efficie	ox for rapid prototyp int and can be appli	ing and demonstr ed to surprisingly I	ation of new sim arge and comple	fadd-on modules offerin ulation methods and more models. For more com Media (OPM) initiative.	feling concepts on
Versio new fa		released on Ap	oril 19th 2013, and	d can be down	nloaded under the te	rms of the GNU G	eneral Public Li	ense (GPL). See our vid	eo highlighting some
lf you a	are using MRS	T in any public	ation, please cite	our overview	paper:				
					n, and B. Skaflestac)1: 10.1007/s10596-		TLAB implemen	ation of consistent discre	itisations on complex
	Old subsetion and	51 years	Total reported votume: 1251 m ²						
		A 1		Nume	rical CO ₂ Laborato	У			
	A SSE estern			comp can de	d to geological CO ₂ ýing structural traps ute the migration pa etermine all traps th	storage. The mod and their connect th and all traps en at are downslope	ule includes an i ion. The user cai countered along	mples that all focus on s nteractive viewer that sim n mark any injection point this path to the top of the on point. Likewise, individ	plifies the process o (or structural trap) to formation, or the use
	9	CCodeda	Joint Despect	The fig		s a vertical equilib		of the Sleipner injection, : detailed CO ₂ volume inv	
3	<u> </u>				more				,
				Fully in	mplicit solvers bas	ed on automatic d	ifferentiation		
									Participant Mont
				includ autom	es a set of routines	for constructing ge lacobians are calc	eneral solvers ba	ex physics and adjoint op ised on automatic differe cally based on common r	ntiation. When using
			N	well lin simul:	mits, and a CPR-typ ator on industry-star	e preconditioner. Idard benchmarks	The simlators giv such as SPE1 a	ner simulators with gas o re good match compared and SPE9 (the plot to the	with a commercial
	-			have a	also been obtained	on simulation mod	iels of real fields		
_				Dood	moro.		_		

http://www.sintef.no/MRST/

Main idea: flexibility and rapid prototyping Light weight/ special purpose

Black box/ general purpose

complexity/ computational complexity

MRST add-on modules

Question:

Why is almost all simulations of reservoirs today using a fully implicit Two Point Method with Mobility upwinding.

Outline

- Reservoir simulation: model , challenges
- Fully implicit two point method's
 - Problems, (Advantages)
- Why not (?)
 - Higher order
 - Explicit saturation
 - Operator splitting based
 - MPFA, MIMETIC ...
- Conclusion/Challenges

Model: Black-oil model

• 3 component – 3phase model

Unknowns

- Phase pressures $\,p_{lpha}\,$
- Phase saturations $\, {}^{s_lpha} \,$
- Gas comp. in oil phase $\,r_s\,$
- Oil comp. in gas phase $\,r_v\,$

Black-oil model

$$\frac{d}{dt}(\phi b_w s_w) + \nabla \cdot (b_w v_w) - b_w q_w = 0$$
$$\frac{d}{dt}(\phi (b_g r_v s_g + b_o s_o)) + \nabla \cdot (b_g r_v v_g + b_o v_o) - (b_g r_v q_g + b_o q_o) = 0$$
$$\frac{d}{dt}(\phi (b_g s_g + b_o r_s s_o)) + \nabla \cdot (b_g v_g + b_o r_s v_o) - (b_g q_g + b_o r_s q_o) = 0$$
$$v_j = -\frac{k_{rj}}{\mu_j} K(\nabla p_j - \rho_j g \nabla z)$$

Primary variables:

- Oil pressure
- Water saturation, gas saturation(/dissolved gas/dissolved oil)

Two point flux mobility upwinding:

$$dp_{i,j} = (p_j - p_i - \rho_{i,j}g(z_j - z_i))$$
$$v_{i,j} = \begin{cases} -\frac{k_{r,j}}{\mu_j}T_{i,j}dp_{i,j} & \text{for } dp_{i,j} \ge 0\\ -\frac{k_{r,i}}{\mu_i}T_{i,j}dp_{i,j} & \text{for } dp_{i,j} < 0 \end{cases}$$

Black-oil model: wells

For each connection:

$$q_j = Tm_{wj}(p_w - p + Hw)$$

- Well head computed explicitly based on phase distribution along well
- For producing connection:

$$m_{wj} = m_j = \frac{k_{rj}}{\mu_j}$$

For injecting connection:

$$m_{wj} = \alpha_j (m_w + m_o + m_g)$$

α_j is the volume fraction of phase j in the injected mixture at connection conditions

Handling of *cross-flow (implicit)*:

- Compute inflow from producing connections (at reference conditions)
- 2) Compute average wellbore mixture (at reference conditions)
- 3) Compute average volumetric mixture at injection connection conditions
- 4) Compute injection connection mobilities

Black-oil model: Jacobian

Setting up the Jacobian:

Primary variables:

$$\underbrace{p_o, s_w, x, q_o^s, q_w^s, q_g^s, p_w}_{S_g, r_s, r_v}$$

- Equations:
 - 1-3 : reservoir equations

• 4-6:
$$q_w^s - \sum b_w^c q_w^c = 0, \ q_o^s = \dots$$

• 7 : well control (phase rates, bhp, ...)

$$\frac{V}{\Delta t}(\phi^{n+1}b_w^{n+1}s_w^{n+1} - \phi^n b_w^n s_w^n) + \nabla \cdot (b_w^{n+1}v_w^{n+1}) - b_w^{n+1}q_w^{n+1} = 0$$

 $\begin{array}{ll} dpW &= s.grad(p-pcOW) - g^{(rhoWf.*s.grad(z))}; upc = (double(dpW) >= 0); \\ bWvW &= s.faceUpstr(upc, bW.*mobW).*s.T.*dpW; \\ eqs{2} &= (pv/dt).*(pvMult.*bW.*sW - pvMult0.*f.bW(p0).*sW0) + s.div(bWvW); \end{array}$

Black-oil model: linear system

Solution procedure for linear equation

$$\frac{\partial F(x^i)}{\partial x^i} \delta x^{i+1} = -F(x^i)$$

- 1. Eliminate $\delta q_o^s, \delta q_w^s, \delta q_g^s$
- 2. Eliminate δp_w

$$\begin{bmatrix} A_{op_o} & A_{os_w} & A_{om} \\ A_{wp_o} & A_{ws_w} & A_{wm} \\ A_{gp_o} & A_{gs_w} & A_{gm} \end{bmatrix} \begin{bmatrix} \delta p_o \\ \delta s_w \\ \delta m \end{bmatrix} = \begin{bmatrix} r_o \\ r_w \\ r_g \end{bmatrix}$$

- 3. After approximate decoupling of pressure, we solve the resulting linear system using GMRES with CPR precontitioner,
- 4. Recover remaining variables

- Similar (transposed) approach implemented for adjoint equations
- Appleyard chop performed when updating saturations
- The CPR preconditioner consist of
 - 1. ILU on whole system
 - 2. Algebraic mulitgrid on pressure sub-system,

Grid: model and data

• The structure of the reservoir (geological, surfaces, faults, etc)

• The stratigraphy of the reservoir (sedimentary structure)

• Petrophysical parameters (permeability, porosity, net-to-gross,)

Grid: North Sea Model

Grid: strange cells

Few observations, few data

• Wells are the observables

The incompressible single phase case have only n-1 degrees of freedom for all possible boundary conditions

- Observables:
 - Well rates (oil, water, gas)
 - Bottom hole pressure

Parameter knowledge

- Horizons seismic
- Permeability , porosity, relative permeability from cores
- 'Geological interpretation/knowleadge, interpolation, geostatistic
- historymatching

Grid orientation effects/ tensor permeability

Standard method + skew grid = grid-orientation effects

MPFA/mimetic : Consistent discretization methods capable of handling general polyhedral grids

Upscaled models do have tensor permeability and relative permeability

Numerical diffusion

• Front capturing

Upwind need fine grid and small time steps to resolve a polymer slug

Viscous fingering comparing a fully implicit single-point upwind and 'TVD-type' schemes

Discontinuous Riemann problem

$$\frac{\partial s}{\partial t} + \frac{\partial}{\partial x}h(s,x) = q(x), \qquad h(s,x) = f_g(s,x)g(x),$$

Upwind method do not always give the physical solution

Proposed methods:

- Explicit
- Splitting:
 - Full system
 - Pressure and transport
 - Transport:
 - Advection, (convection) diffusion
- High order:
- MPFA, MIMETIC, Mixed finite element, DG
- Parallelization:

Explicit methods

- Heterogeneity (grids):
 - small cells
 - high porosity

• Velocity

$$v \sim \frac{1}{r}$$

High CFL numbers from localized features

Splitting: Pressure ("elliptic") – transport ("hyperbolic")

• Incompressible two phase flow:

$$\nabla \cdot \vec{v} = q \tag{1}$$
$$\vec{v} + \lambda K \left[\nabla p - \lambda_w \rho_w + \lambda_n \rho_n \right] \vec{g} = 0$$
$$\phi \frac{\partial s_w}{\partial t} + \nabla \cdot \left[f_w (\vec{v} + \lambda_n (\rho_w - \rho_n) K \vec{g}) \right] = q_w. \tag{2}$$

- Equation 1) independent of saturation (and pressure)
- Equation 2) has solution if $\nabla\cdotec{v}=q$

Splitting: Pressure ("elliptic") – transport splitting ("hyperbolic") $\phi(c_w S_w + (1 - S_w)c_o)\frac{\partial p}{\partial t} + (f_w c_w + (1 - f_w)c_o)\nabla p \cdot \vec{v} + \nabla \cdot \vec{v} = q \qquad (1)$ $\vec{v} + \lambda K [\nabla p - \lambda_w \rho_w + \lambda_n \rho_n)\vec{g}] = 0$ $\phi \frac{\partial \rho_w s_w}{\partial t} + \nabla \cdot [\rho_w f_w (\vec{v} + \lambda_n (\rho_w - \rho_n) K \vec{g})] = q_w. \qquad (2)$

- Equation 1) not independent of saturation
- There may be no solution to 2) if 1) is not fulfilled
 - Saturation outside range (0,1)

Strong coupling: Vertical equilibrium model

Integration in vertical direction \longrightarrow pressure equation:

$$\nabla_{\parallel} \cdot \vec{v} = q_{\text{tot}}, \quad \vec{v} = -\lambda_t \Big[\nabla_{\parallel} p_t - \Big(f_v \rho_{\text{CO}_2} + [1 - f_v] \rho_w \Big) \vec{g}_{\parallel} + \frac{\lambda_w}{\lambda_t} \nabla_{\parallel} g_c \Big]$$

and transport equation:

$$\phi H(x)\frac{\partial s}{\partial t} + \nabla_{\parallel} \cdot \left(f_v(s,x)\vec{v} + f_g(s,x) \left[\vec{g}_{\parallel} + \nabla_{\parallel} g_c(s,x) \right] \right) = q(x)$$

The "transport" equation have obtained a parabolic term, by strong gravity coupling to pressure equation.

High order

- Pressure
 - Heterogeneity permeability
 - Large uncertainty
 - No gain?
- Transport (DG?)
 - Splitting to transport problem?
 - Explicit methods excluded, need to be implicit

MIMETIC, MPFA, ..

- Pressure equation
 - Problematic for aspect ratio: anisotropy (MPFA/mimetic(?))
 - More expensive : (Mimic 3 times dof, 2 times bandwidth)

- Limited experience: Nonlinear methods
- Coupled system
 - Formulation ? (Mixed, mimetic,...)
 - Stability for hyperbolic part: Upwinding ?, numerical flux ?
 - Physical effects
 - Gravity, Capillary pressure, wells and dissolution

Others

- Parallelization
 - Communication costs due to need for implicit solver
 - Difficulty of partitioning due to
 - Channelized flow
 - Long horizontal Wells, give nonlocal connections

- Methods using simplexes
 - Aspect ration imply to many grids

Our view on specific challenges for reservoir simulation

- Large aspect ratio
 - Reservoirs: 10 km laterally , 50-200 m vertically
- Discontinuities:
 - Permeability
 - Relative permeability
 - Capillary pressure
- Grid and model parameter are strongly connected
 - strange grids, general polyhedral cells
- Coarse grid
 - Grid cells typically 100m laterally , 4 m vertically
 - Transport hyperbolic
- Strong coupling between "elliptic" and "hyperbolic" variables
 - Large scale: gravity
 - Smaller scale: capillary pressure
- Non local connections:
 - Wells or fast flowing channels
 - Parallelization

Conclusion: What is needed

- Research should focus on:
 - Methods for general challenging grid with generic implementation
 - Methods which work for elliptic, parabolic and hyperbolic problems
 - Methods for strongly coupled problems
 - Tensor Mobilities
- Specific purpose simulators
 - Codes using modern methods for correctly simplified systems
- Accept for simplifications
 - In reservoir simulation an fully implicit solve using TPFA and mobility upwinding is ofhen assumed to be the truth.
- Work flows including:
 - Simple models
 - Numerical (specific) upscaled/reduced models
 - Trusted simulations/"Full physics simulations."
- Open source
 - Simulators to challenge industry simulators
 - Implementations of current research
- Open Data
 - Real reservoir models as benchmark

More advanced operator splitting

$$\nabla \cdot \vec{v} = q, \qquad \vec{v} + \lambda K \left[\nabla p - \lambda_w \rho_w + \lambda_n \rho_n \right] \vec{g} = 0$$
$$\phi \frac{\partial s_w}{\partial t} + \nabla \cdot \left[f_w (\vec{v} + \lambda_n (\rho_w - \rho_n) K \vec{g}) \right] = q_w.$$
$$\vec{v} = \vec{v}_a + \vec{v}_c$$

 $\nabla \cdot \vec{v} = q$

 $\nabla \cdot \vec{v_a} = q$ $\nabla \cdot \vec{v_c} = 0$ $\vec{v} + \lambda K[\nabla p - \omega(S)\vec{g}] = 0 \qquad \vec{v_a} + \lambda K[\nabla p_a] = 0 \qquad \vec{v_c} + \lambda K[\nabla p_c - \omega(S)\vec{g}] = 0$

Vertical equilibrium calculations: inventory

- Phase model:
 - incompressible
 - compressible
 - dissolution
- Relative permeability models
 - sharp interface
 - capillary fringe
 - detailed hysteric model
 - upscaling of subscale variations

Simulation of Sleipner Layer 9

Experience

- Depth-integrated models are highly efficient and sufficiently accurate to predict long-term plume migration
- Often more accurate than unresolved 3D simulations
- Gravity dominated flow highly sensitive to small changes in top surface

Relperm upscaling:

Relative permeability (Viscous/capillary limit), oil phase

Fully implicit code

- Based on automatic differentiation for autoamtic generation of Jacobians
- Gradients obtained through adjoint simulations
- Current models
 - Oil/water (+ polymer/surfactant)
 - Oil/gas
 - 3-phase black oil (live oil/dry gas)

- Benchmarked against commercial simulator on real field black oil model
- ~20 years of historic data
- Virtually identical results

Numerical Example (Black oil)

SPE9 – 3 phase black-oil

- I water injector, rate-controlled switches to bhp
- 25 producers, oil-rate controlled most switch to bhp
- Appearance of free gas due to pressure drop
- Almost perfect match between MRST and commercial simulator

Oil rates at producers 1, 3 and 4

Numerical Example (Black oil)

GOR at a producer 1, 3 and 4

Background: time-of-flight (TOF) and tracer equations

In this context: TOF and stationary tracer equations are solved efficiently after a single flow (pressure) solve:

Diagnostics based on time-of-flight (TOF) and tracers

Efficient ranking of geomodels

- Reduce ensamble prior to (upscaling and) full simulation
- Need measures that correlate well with e.q., receovery prediction

Validation of upscaling

Use allocation factors for assessing quality of upscaling

Visualization

- See flow-paths, regions of influence, interaction regions etc
- Immediately see effect of new well-placements, model updates etc.

Optimization

- Use as proxies in optimization to find good initial guesses.
- Need measures that correlate well to objective (e.g, NPV)

MRST add-on modules

Fit-for-purpose reservoir simulation

Flexible simulators that are easy to extend with new functionality and scale with the requirement for the accuracy and computational budget

accuracy +speed + robustness + access to gradients + model tuning

Black-oil model

$$\frac{d}{dt}(\phi b_o s_o) + \nabla \cdot (b_o v_o) - b_o q_o = 0$$
$$\frac{d}{dt}(\phi (b_g r_v s_g + b_o s_o)) + \nabla \cdot (b_g r_v v_g + b_o v_o) - (b_g r_v q_g + b_o q_o) = 0$$
$$\frac{d}{dt}(\phi (b_g s_g + b_o r_s s_o)) + \nabla \cdot (b_g v_g + b_o r_s v_o) - (b_g q_g + b_o r_s q_o) = 0$$
$$v_j = -\frac{k_{rj}}{\mu_j} K(\nabla p_j - \rho_j g \nabla z)$$

Water equation discretized in time:

$$\frac{V}{\Delta t}(\phi^{n+1}b_w^{n+1}s_w^{n+1} - \phi^n b_w^n s_w^n) + \nabla \cdot (b_w^{n+1}v_w^{n+1}) - b_w^{n+1}q_w^{n+1} = 0$$

Matlab code:

eqs{2} = (pv/dt).*(pvMult.*bW.*sW - pvMult0.*f.bW(p0).*sW0) + s.div(bWvW); eqs{2}(wc) = eqs{2}(wc) - bWqW;

