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The ultimate goal

The ultimate goal

We want to approximate a general second-order elliptic equation in 3D
with an arbitrary polyhedral mesh with a conforming finite element
method of order k .

{
−div (κ∇u) + β · ∇u + αu = f in Ω ⊂ R3

u = g on ∂Ω

We start with the two-dimensional case.
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Virtual Element spaces in 2D

The local finite element space Vk(P)

Let P be a polygon. We would like to define a finite element space Vk(P)
on P such that:

Vk(P) contains the space Pk(P) of polynomials of degree less than or
equal to k plus other “bad” functions;

if two polygons P and P ′ have an edge in common, the two spaces
Vk(P) and Vk(P ′) must “glue” in C 0(P ∪ P ′);

I don’t want to compute the pointwise value of the “bad”
(non-polynomial) functions to approximate my equation.
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Virtual Element spaces in 2D

The local finite element space Vk(P)

A function vh in Vk(P) is defined by the following properties:

if e is and edge of P, vh restricted to e is a polynomial of degree less
than or equal to k ;

vh is continuous on the boundary of P;

∆vh is a polynomial of degree less or equal than k − 2 in P.
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Virtual Element spaces in 2D

The local finite element space Vk(P) for k = 1

In the case k = 1 an element vh of V1(P) is linear on each edge e,
continuous on the boundary of P and harmonic inside (P−1(P) = {0}).

For k = 1 this definition corresponds to the well-known notion of
Harmonic Barycentric Coordinates on polygons.
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Virtual Element spaces in 2D

The local finite element space Vk(P)

It is clear that the condition

∆vh ∈ Pk−2(P)

ensures that
Pk(P) ⊂ Vk(P) .

If Nv is the number of vertices (and also the number of edges) of the
polygon P, the dimension of Vk(P) is given by

dimVk(P) = Nv + Nv (k − 1) +
k(k − 1)

2
= Nvk +

k(k − 1)

2
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Virtual Element spaces in 2D

Degrees of freedom in Vk(P)

Let (xP , yP) be the centroid of P and hP its diameter. If α = (α1, α2) is a

multiindex we define the scaled monomials of degree |α| = α1 + α2:

mα(x , y) :=

(
x − xP
hP

)α1
(
y − yP
hP

)α2

.

The set {mα, with |α| ≤ k} is a basis for Pk(P).

As degrees of freedom in Vk(P), we choose:

the value of vh at the vertices and at k − 1 equally spaced points on
each edge;

the (scaled) moments
1

|P|

∫
P
vhmα for |α| ≤ k − 2.
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Virtual Element spaces in 2D

Degrees of freedom in Vk(P)

It can be easily shown that:

the degrees of freedom above are unisolvent in Vk(P).

The choice of the moments
∫
P vhmα for |α| ≤ k − 2 as degrees of freedom

implies that, starting from the degrees of freedom of vh, I can compute

Π0
k−2vh := L2 projection of vh onto Pk−2(P).

Infact, to compute the L2 projection of vh onto Pk−2(P) I need to
compute the moments

∫
P vh p up to order k − 2 which are among the

degrees of freedom.
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Virtual Element spaces in 2D

Meaning of “I can compute”

In what follows the precise meaning of the statement

I can compute Π0
k−2vh

is:
given the array dofi (vh), I can compute Π0

k−2vh

The same applies for all other quantities which are computable from vh.
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Virtual Element spaces in 2D

Basis functions in Vk(P)

For i = 1, . . . ,Ndof we define ϕi as the function in Vk(P) such that

dofj(ϕi ) = j-th degree of freedom of ϕi =

{
1 if i = j

0 if i 6= j

We have the usual Lagrange-type expansion

vh =
Ndof∑
i=1

dofi (vh)ϕi .

• It is clear that if I could compute directly the bilinear form on the space
Vk(P), the resulting finite element method would converge with the right
optimal rates.
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Projectors in 2D

The projector operator Π∇k

Warning: For a while I will restrict to the case k ≥ 2. The case k = 1 is
similar but does not fit well in the general case.

We define a projection operator

Π∇k : Vk(P) −→ Pk(P)

which is orthogonal with respect to the H1 inner product
∫
P ∇u · ∇v , i.e.:

(1)

∫
P
∇pk · ∇Π∇k vh =

∫
P
∇pk · ∇vh for all pk ∈ Pk(P)

(2)

∫
P

Π∇k vh =

∫
P
vh

Condition (1) defines Π∇k vh up to a constant function, while condition (2)
determines how Π∇k acts on constant functions.

Note that the gradient of Π∇k vh is completely determined by condition (1).
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Projectors in 2D

Computability of Π∇k

The operator Π∇k vh is computable without knowing the values of vh inside
the polygon. In fact:

to compute Π∇k ϕi , it is enough to test condition (1) only on {mβ};

if we express Π∇k ϕi =
∑
|α|≤k

siαmα, condition (1) becomes:

(1)’
∑
|α|≤k

siα

∫
P
∇mβ · ∇mα =

∫
P
∇mβ · ∇ϕi , |β| ≤ k

and condition (2) becomes

(2)’
∑
|α|≤k

siα

∫
P
mα =

∫
P
ϕi
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Projectors in 2D

Computability of Π∇k

When β = (0, 0), equation (1)’ is the identity 0 = 0 reflecting the fact
that condition (1) determines Π∇k vh only up to a constant function.

Equation (2)’ supplies the missing condition.

Equations (1)’ and (2)’ form for each i a system of linear equations of
dimension

dimPk(P) =
(k + 1)(k + 2)

2
.
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Projectors in 2D

Computability of Π∇k

The matrix is always computable (integrals of polynomials on P);

the right-hand-side

∫
P
ϕi is computable because it is one of the

degrees of freedom;

the right-hand-side

∫
P
∇mβ · ∇ϕi can be written as

∫
P
∇mβ · ∇ϕi = −

∫
P

∆mβ ϕi +

∫
∂P

∂mβ

∂n
ϕi∫

P
∆mβ ϕi can be computed because ∆mβ ∈ Pk−2(P);∫

∂P

∂mβ

∂n
ϕi can be computed because on each edge the integrand is

a known polynomial of degree k(k − 1).
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Projectors in 2D

What we have so far

Starting from the degrees of freedom of a function vh ∈ Vk(P), we can
compute:

the nabla projector of vh: Π∇k vh ∈ Pk(P) ;

the L2 projector of vh on Pk−2(P): Π0
k−2vh ∈ Pk−2(P) .

We wish to apply the abstract theorem proved by the “volley” team:

Theorem. Suppose that aPh (·, ·) is a local bilinear form defined on P
which approximate the exact bilinear form aP(·, ·) in the following sense:

it is consistent, i.e. aPh (vh, pk) = aP(vh, pk) for any vh ∈ Vk(P) and
any pk ∈ Pk(P);

it is stable, i.e. α∗a
P(vh, vh) ≤ aPh (vh, vh) ≤ α∗aP(vh, vh).

Then if we use ah(·, ·) instead of a(·, ·) the method converges.
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Projectors in 2D

What we have so far

As shown in the previous talk by Lourenco Beirao, the projectors Π∇k and
Π0
k−2 allow us to compute an approximate bilinear form aPh (·, ·) which is

consistent and stable in the simple case of the Laplace operator:{
−∆u = f in Ω ⊂ R2

u = g on ∂Ω

In this case we have aP(uh, vh) =
∫
P ∇uh · ∇vh and we can define

aPh (uh, vh) := aP(Π∇k uh,Π
∇
k vh) + S((I − Π∇k )uh, (I − Π∇k )vh)

where S(ϕi , ϕj) = δij . The load term
∫
P f vh can be approximated by∫

P
f vh ≈

∫
P
f Π0

k−2vh.
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Projectors in 2D

Computing other projectors: Π0
k−1∇vh

To deal with more general operator, we need to extract more information
out of the space Vk(P).

Up to now we have seen that we are able to compute Π∇k vh and Π0
k−2vh.

We show now that we can easily compute Π0
k−1∇vh .

To compute Π0
k−1∇vh we need to know the moments of ∇vh up to order

k − 1: ∫
P

∂vh
∂x

mβ = −
∫
P
vh
∂mβ

∂x
+

∫
∂P

vh mβ nx , |β| ≤ k − 1

and both terms are computable directly from the degrees of freedom of vh.
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Projectors in 2D

Computing the L2 projection onto Pk(P)

We go back to the definition of Vk(P):

A function vh in Vk(P) is defined by the following properties:

if e is and edge of P, vh restricted to e is a polynomial of degree less
or equal than k;

vh is continuous on the boundary of P;

∆vh is a polynomial of degree less than or equal to k − 2 in P.

The boxed condition has been used only to ensure that Pk(P) ⊂ Vk(P)
and to get the right number of degrees of freedom.

We can change it and slightly modify (enhance) the space Vk(P).

A. Russo (Milan) VEM July 14, 2014 19 / 43



Projectors in 2D

Computing the L2 projection onto Pk(P)

The idea is first to relax the condition ∆vh ∈ Pk−2(P) by asking

∆vh ∈ Pk(P)

and then requiring∫
P
vhmα =

∫
P

Π∇k vh mα for |α| = k and |α| = k − 1

We call Wk(P) this new space.

This may seem weird because we defined Π∇k only on Vk(P), but if we go
back to the definition we see that actually Π∇k is defined on the whole
space H1(P) (but of course it’s not computable in general!).
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Projectors in 2D

Computing the L2 projection onto Pk(P)

It can be shown that Wk(P) has the same dimension of Vk(P) and can be
described by the same degrees of freedom of Vk(P).

The projection operators Π∇k wh and Π0
k−1∇wh can still be computed.

The additional property that the k and k − 1 moments are computable
(through the projector Π∇k ) implies that

in Wk(P) we can compute the full L2 projection onto Pk(P).
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Projectors in 2D

The spaces Vk(P) and Wk(P)

Vk(P) and Wk(P) have the same dimension;

Vk(P) and Wk(P) can be described with the same set dofi of degrees
of freedom;

both Vk(P) and Wk(P) contain the polynomials of degree k ;

given vh ∈ Vk(P) and wh ∈Wk(P),

if dofi (vh) = dofi (wh) then Π∇k vh = Π∇k wh

(obviously, also Π0
k−2vh = Π0

k−2wh);

the basis functions ϕi are different in Vk(P) and in Wk(P) but their
Π∇k and Π0

k−2 projections are equal;

in Wk(P) we can also compute Π0
kwh;

for k = 1 and k = 2 we have Π0
kwh = Π∇k wh.
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VEM approximation of general elliptic equations

VEM approximation of general elliptic equations

We consider now a general second order elliptic operator with variable
coefficients:

−div (κ∇u) + β · ∇u + αu = f

and we approximate the various local consistency terms as:∫
P
κ∇uh · ∇vh  

∫
P
κ
[
Π0
k−1∇uh

]
·
[
Π0
k−1∇vh

]
∫
P

(
β · ∇uh

)
vh  

∫
P

(
β ·
[
Π0
k−1∇uh

])
Π0
kvh∫

P
α uh vh  

∫
P
α
[
Π0
kuh
] [

Π0
kvh
]

and for the right-hand-side:∫
P
f vh  

∫
P
f Π0

kvh
(
Π0
k−2vh is enough for k ≥ 2

)
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VEM approximation of general elliptic equations

VEM approximation of general elliptic equations

The approximations above produce, as usual, rank-deficient matrices that
must be stabilized.

For the stabilization we can take the same term we had for the Laplace
operator, i.e.

S((I − Π∇k )uh, (I − Π∇k )vh)

with S(ϕi , ϕj) = δij .

Summarizing, the approximate local stiffness matrix provided by the
Virtual Element Method is

(KP
VEM)ij := aPh (ϕi , ϕj) :=∫

P

κ
[
Π0

k−1∇ϕj

]
·
[
Π0

k−1∇ϕi

]
+

∫
P

[
β · Π0

k−1∇ϕj

]
Π0

kϕi +

∫
P

α
[
Π0

kϕj

] [
Π0

kϕi

]
+ S((I − Π∇k )ϕi , (I − Π∇k )ϕj)
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VEM approximation of general elliptic equations

The stabilization term S((I − Π∇k )ϕi , (I − Π∇k )ϕj)

If we expand Π∇k ϕi in the basis {ϕ`} itself, we have

Π∇k ϕj =
Ndof∑
`=1

πj`ϕ` and (I − Π∇k )ϕj =
Ndof∑
`=1

(δj` − πj`)ϕ`

so that

S((I − Π∇k )ϕj , (I − Π∇k )ϕi ) =
Ndof∑
`,m=1

(δj` − πj`)(δim − πim) S(ϕ`, ϕm)

and we can use (see [Beirao, Brezzi, Cangiani, Manzini, Marini, R. 2013])

S(ϕ`, ϕm) = δ`m (because we are in 2D).

Any symmetric and positive definite matrix which scale like 1 with respect
to h will work.
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VEM approximation of general elliptic equations

The matrices KP and KP
VEM

If we compare the exact local stiffness matrix

(KP)ij := aP(ϕi , ϕj)

with the VEM local stiffness matrix KP
VEM defined above,

it is NOT true that (KP)ij ≈ (KP
VEM)ij

as we would have if we had approximated KP by numerical integration.
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Extension to 3D

The local VEM spaces in three dimensions

We begin by considering the simple Laplace equation in three dimensions:{
−∆u = f in Ω ⊂ R3

u = g on ∂Ω

We assume that the domain Ω is partitioned in a family of polyhedra {P}
and we want to define a Virtual Element Method of order k for this
problem.

We define the scaled moments mα for |α| ≤ k as in the two dimensional
case.
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Extension to 3D

The local VEM spaces in three dimensions

We know from the previous analysis that we need to include polynomials
of degree k and we should compute the projectors Π∇k and Π0

k−2.

Hence we start to define the local virtual space in 3D by requiring

vh|e ∈ Pk(e) for each edge e and ∆uh ∈ Pk−2(P)

We need to understand what to do for the faces {f } of P.

The projection Π0
k−2 can be computed directly by the internal degrees of

freedom.

For the projection Π∇k we need to compute the integrals∫
P
∇mβ · ∇vh for |β| ≤ k
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Extension to 3D

The local VEM spaces in three dimensions

Integrating by parts:∫
P
∇mβ · ∇vh = −

∫
P

∆mβ vh +
∑
f

∫
f

∂mβ

∂nf
vh

The first term is an internal moment of order k − 2 and can be computed
directly from the internal degrees of freedom.

The second term is a moment of order k − 1 on the face f .

This means that we can choose

vh|f ∈Wk(f ) for each face f

because in Wk(f ) (the enhanced Vk(f )) we can compute the L2 projector
Π0
f ,k , and hence all moments up to order k .
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Extension to 3D

The local VEM spaces in three dimensions

The VEM approximate bilinear form for the Laplace equation in 3D is:

aPh (uh, vh) =

∫
P
∇Π∇k uh · ∇Π∇k vh + S((I − Π∇k )uh, (I − Π∇k )vh)

where this time
S(ϕi , ϕj) = hP δij .

If we want to approximate a more general operator, we have to compute
Π0
k−1∇vh and the L2 projector Π0

k .

Π0
k−1∇vh can be computed directly from the degrees of freedom.

For the L2 projector Π0
k we can enhance the space as shown in two

dimensions.
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The VEM paradigm

The VEM paradigm

We believe that the Virtual Element Method has a wide range of
applicability. The keypoints of VEM are:

The definition of the local finite element spaces and of the associated
degrees of freedom. These spaces contain polynomials plus other
functions which are not computable.

The costruction of variuos projectors onto polynomial spaces.

The definition of a consistent and stable bilinear form using these
projectors which is the VEM approximation of the exact bilinear form.

A general theorem that guarantees convergence for a consistent and
stable approximate bilinear form.
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The VEM paradigm

The VEM paradigm

The VEM paradigm is currently being applied for various problem,
including:

H(div) and H(curl) VEM [Beirao da Veiga, Brezzi, Marini, R.]

Non conforming VEM [Ayuso, Lipnikov, Manzini] talk this afternoon

SUPG stabilization of convection-dominated equations [Cangiani,
Manzini, R., Sutton]

Cm finite elements [Beirao da Veiga, Manzini]

Eigenvalue problems [Beirao da Veiga, Mora] next talk

Elasticity Problems [Beirao da Veiga, Brezzi, Marini, Paulino]

Plates and Shells [Brezzi, Marini]

Helmholtz equations [Perugia, Pietra, R.]
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Numerical Experiments
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Numerical Experiments

Joining meshes 1
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Numerical Experiments

Joining meshes 2
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Numerical Experiments

Joining meshes 2
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Numerical Experiments

Joining meshes 3

joined
1573 polygons, Ndof=10389, h
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 = 3.73e−01, h

mean
 = 3.46e−02
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Numerical Experiments

Joining meshes 3
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Numerical Experiments

Robustness
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Numerical Experiments

Robustness
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Numerical Experiments

Robustness

We solved the equation
−∆u + u = f

on the unit square with k = 2 where f and the Dirichlet boundary
condition are taken in such a way that the exact solution is

u(x , y) = sin(2x + 0.5) cos(y + 0.3) + log(1 + xy)
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Numerical Experiments

Robustness

degeneracy h error L2
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Numerical Experiments
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Thanks for your attention!
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