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Outline of the presentation

Outline of the presentation

o The ultimate goal

@ Virtual Element spaces. in 2D

@ Projectors in'2D

o 'VEM approximation of general elliptic equations
e Extensionto 3D

@ The VEM paradigm

Numerical-experiments
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The ultimate goal

The ultimate goal

We want to approximate a general second-order elliptic equation in 3D

with an arbitrary polyhedral mesh with a conforming finite element
method of order k.

—div(kVu)+B-Vut+au=Ff inQCR?
u=g ondQ

We start with the two-dimensional case.
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The local finite element space Vi (P)

Let P be a polygon. We would like to define a finite element space Vi (P)
on P such that:

@ Vi (P) contains the space Px(P) of polynomials of degree less than or
equal to k plus other “bad” functions;

@ if two polygons P and P’ have an edge in common, the two spaces
Vi(P) and Vi (P') must “glue” in CO(P U P');

@ | don't want to compute the pointwise value of the "bad”
(non-polynomial) functions to approximate my equation.
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Virtual Element spaces in 2D

The local finite element space Vi (P)

A function vy, in Vi (P) is defined by the following properties:

o if e is and edge of P, v restricted to e is a polynomial of degree less
than or equal to k;

@ vy, is continuous on the boundary of P;
@ Avy is a polynomial of degree less or equal than kK — 2 in P.
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Virtual Element spaces in 2D

The local finite element space Vi (P) for k =1

In the case k =1 an element v, of V;(P) is linear on each edge e,
continuous on the boundary of P and harmonic inside (P_1(P) = {0}).
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For k = 1 this definition corresponds to the well-known notion of
Harmonic Barycentric Coordinates on polygons.
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The local finite element space Vi (P)

It is clear that the condition

’Avh S ]P’k,Q(P) ‘

ensures that

Pe(P) € Vi(P)]

If NV is the number of vertices (and also the number of edges) of the
polygon P, the dimension of V| (P) is given by

K(k —1 K(k -1
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Degrees of freedom in Vi (P)

Let (xp, yp) be the centroid of P and hp its diameter. If o = (a1, 2) is a
multiindex we define the | scaled monomials | of degree |a| = a1 + as:

(%1 (&%)
[ X—=Xp y—=yp
ma(Xﬂy) T ( hP ) ( hP ) ‘

The set {mq,, with || < k} is a basis for Px(P).

As degrees of freedom in Vi (P), we choose:

@ the value of v, at the vertices and at k — 1 equally spaced points on
each edge;

1
@ the (scaled) moments |P]/ VhMg | for |a] < k — 2.
P
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Degrees of freedom in Vi (P)

It can be easily shown that:

@ the degrees of freedom above are unisolvent in Vj(P).
The choice of the moments [, vamq, for || < k — 2 as degrees of freedom
implies that, starting from the degrees of freedom of v, | can compute
N9 ,v, := L? projection of v, onto Px_»(P).

Infact, to compute the L2 projection of vj, onto Px_»(P) | need to
compute the moments fP vp p up to order k — 2 which are among the
degrees of freedom.
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Virtual Element spaces in 2D

Meaning of “l can compute”

In what follows the precise meaning of the statement

| can compute I'I?(_2vh

given the array dof;(vs), | can compute M9 _,vj,

The same applies for all other quantities which are computable from vy,
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Basis functions in Vi (P)

For i =1,..., N9 we define ¢; as the function in V) (P) such that

1 i
dofj(¢;) = j-th degree of freedom of ¢; = I I J
0 ifis#

We have the usual Lagrange-type expansion
Ndof

Vh = Z dOf,’(Vh) @i
i=1

e It is clear that if | could compute directly the bilinear form on the space

Vi (P), the resulting finite element method would converge with the right
optimal rates.
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Projectors in 2D

The projector operator MY

Warning: For a while | will restrict to the case k > 2. The case k=1 is
similar but does not fit well in the general case.

We define a projection operator

NY : Vi(P) — Py (P)

which is orthogonal with respect to the H* inner product fP Vu-Vv,ie.:
(1) / Vpk - Vl'lkvvh = / Vpk - Vv for all px € Pr(P)
P P

@ [rw= [

Condition (1) defines MY v, up to a constant function, while condition (2)
determines how M) acts on constant functions.

Note that the gradient of M} vj, is completely determined by condition (1)
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Computability of M)

The operator I'IEV;7 is computable without knowing the values of v, inside

the polygon. In fact:

e to compute MY ¢;, it is enough to test condition (1) only on {mg};

o if we express I'Ich,- = Z SioaMeq, condition (1) becomes:

|| <k
(1y > s,a/vmﬁ vma_/vmﬁ Vi, |8l <k
|a|<k
and condition (2) becomes
2) Z Sla/ ma—/‘P:
|| <k
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Computability of M)

When 3 = (0,0), equation (1)’ is the identity 0 = O reflecting the fact
that condition (1) determines MY v, only up to a constant function.

Equation (2)" supplies the missing condition.
Equations (1)' and (2)' form for each /i a system of linear equations of

dimension

(k+1)(k+2)

dimIP’k(P) = > .
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Computability of M)

@ The matrix is always computable (integrals of polynomials on P);

@ the right-hand-side / ©; is computable because it is one of the

degrees of freedom;

@ the right-hand-side / Vmg - V; can be written as
P

0
/Vmﬁ.Vgpi:—/Amgcp;+ mﬁg@;
P P op On

° / Ampg p; can be computed because Amg € Py_»(P);
P

on
a known polynomial of degree k(k — 1).

om
° / B (j can be computed because on each edge the integrand is
oP
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Projectors in 2D

What we have so far

Starting from the degrees of freedom of a function v, € Vi(P), we can
compute:

@ the nabla projector of vj: I'va;7 € Py(P) |,

e the L2 projector of v, on Py_o(P): I'I?(_va7 € Pr_o(P)|.

We wish to apply the abstract theorem proved by the “volley” team:

Theorem. Suppose that af’(-,-) is a local bilinear form defined on P
which approximate the exact bilinear form a”(-,-) in the following sense:
e it is consistent, i.e. af (vh, px) = a (v, px) for any v, € Vi(P) and
any px € Pr(P);
@ it is stable, i.e. Oé*aP(Vh, Vh) < aﬁ(vh, Vh) < a*a'D(vh, Vh)-

Then if we use ap(-,-) instead of a(-, -) the method converges.
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What we have so far
As shown in the previous talk by Lourenco Beirao, the projectors I'If and

ﬂ2_2 allow us to compute an approximate bilinear form aﬁ(-, -) which is
consistent and stable in the simple case of the Laplace operator:

~Au="f inQcCR?
u=g on o

In this case we have a (up, vi) = Jp Vup - Vv, and we can define
a,‘?(uh, vp) 1= aP(I_IYUh, ﬂkvvh) + S((1 - I_Ikv)uh, (1 — I_Ikv)vh)

where S(y;i, ¢j) = dj;. The load term [}, f vj, can be approximated by

/fvhz/fﬂ?(_zvh.
P P
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Projectors in 2D

Computing other projectors: M9 Vv,

To deal with more general operator, we need to extract more information
out of the space Vi(P).

Up to now we have seen that we are able to compute MY v and N9 _,vj.

We show now that we can easily compute [19 Vv, |.

To compute I'|271Vvh we need to know the moments of Vv up to order
k—1:

Ovp omg
Ok g = — <k-1
S Ox mg /th e —|—/8P vpmgny, |B] <

and both terms are computable directly from the degrees of freedom of vj,.
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Computing the L? projection onto P (P)

We go back to the definition of V| (P):

A function vy, in Vi(P) is defined by the following properties:

o if e is and edge of P, vy restricted to e is a polynomial of degree less
or equal than k;

@ vy, is continuous on the boundary of P;

@ | Avy is a polynomial of degree less than or equal to k — 2 in P.‘

The boxed condition has been used only to ensure that Px(P) C Vi(P)
and to get the right number of degrees of freedom.

We can change it and slightly modify (enhance) the space Vi (P).
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Computing the L? projection onto P (P)

The idea is first to relax the condition Avj € Px_»(P) by asking
Avy € ]P)k(P)

and then requiring
/ VhMa :/ NY v, mg for o = k and || = k — 1
P P

We call Wi (P) this new space.
This may seem weird because we defined I_Ikv only on Vi (P), but if we go

back to the definition we see that actually I'IX is defined on the whole
space HY(P) (but of course it's not computable in general!).
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Projectors in 2D

Computing the L? projection onto P (P)

It can be shown that Wj(P) has the same dimension of Vi (P) and can be
described by the same degrees of freedom of V| (P).

The projection operators I'I,(VW,7 and ﬂ2_1VWh can still be computed.

The additional property that the kK and kK — 1 moments are computable
(through the projector M}Y') implies that

in W, (P) we can compute the full L? projection onto P4 (P).
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The spaces Vi (P) and W, (P)

Vi (P) and Wi (P) have the same dimension;

Vi(P) and Wi (P) can be described with the same set dof; of degrees
of freedom;

both Vi(P) and Wk (P) contain the polynomials of degree k;
given v, € Vi (P) and w, € Wi (P),

if dOf,‘(Vh) = dOf,‘(Wh) then I"vah = HXW/-,

(obviously, also M9 v, = M9 _,wy);
e the basis functions ¢; are different in V(P) and in W (P) but their
I'Iy and I—I272 projections are equal;

e in W (P) we can also compute Mwy;
@ for k =1 and k = 2 we have I'Igwh = I'Ikvwh.
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VEM approximation of general elliptic equations

VEM approximation of general elliptic equations

We consider now a general second order elliptic operator with variable
coefficients:

—div(kVu)+ 8 -Vu+au="f

and we approximate the various local consistency terms as:

° /PHVUh -Vvp /I;/i [ﬂ2_1Vuh] . [I'Ig_leh}
° /P (5 . Vuh) v o~ /P (ﬁ- [I'I271Vuh]) M%v,
° /Pauh Voo /Pa [ﬂ?(uh] [ﬂ?(vh]

and for the right-hand-side:

° / fvp -~ / f v, (I—Ig_zvh is enough for k > 2)
P P
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VEM approximation of general elliptic equations

VEM approximation of general elliptic equations

The approximations above produce, as usual, rank-deficient matrices that
must be stabilized.

For the stabilization we can take the same term we had for the Laplace
operator, i.e.

S((1 = )un, (1 = 1Y )v)
with S(pj, @) = dj;.

Summarizing, the approximate local stiffness matrix provided by the
Virtual Element Method is

(KCEM)U = aﬁ(‘fgia ‘Pj) =
/P kM1 V] - [N, V] + /P (B9 _ V] MY + /P a MYy [Mei]

+S((1 =Y )i, (1= 1Y )))
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VEM approximation of general elliptic equations

The stabilization term S((/ — NY);, (I — MY )p;)

If we expand MY ¢; in the basis {(;} itself, we have

Ndof Ndc'f
MY o) = wa and (I =NY)g; = D (30 — mje)pe
=1
so that
Ndof
ST =) (1 =Ty = D (60 = je) (Sim — Tim) S(20: om)
l,m=1

and we can use (see [Beirao, Brezzi, Cangiani, Manzini, Marini, R. 2013])

’5(4,94,@,7) = 54,.,,‘ (because we are in 2D).

Any symmetric and positive definite matrix which scale like 1 with respect

to h will work.
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VEM approximation of general elliptic equations

The matrices K” and K/

If we compare the exact local stiffness matrix
(K")j = a"(¢i ¢))
with the VEM local stiffness matrix K/, defined above,
it is NOT true that (KP); ~ (KF,)i

as we would have if we had approximated K by numerical integration.
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Extension to 3D

The local VEM spaces in three dimensions

We begin by considering the simple Laplace equation in three dimensions:

~Au=f inQCR?
u=g ondQ
We assume that the domain € is partitioned in a family of polyhedra {P}

and we want to define a Virtual Element Method of order k for this
problem.

We define the scaled moments my, for || < k as in the two dimensional
case.
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Extension to 3D

The local VEM spaces in three dimensions

We know from the previous analysis that we need to include polynomials
of degree k and we should compute the projectors My and M9 .

Hence we start to define the local virtual space in 3D by requiring
Vhle € Px(e) for each edge e and  Aup € Py_2(P)

We need to understand what to do for the faces {f} of P.

The projection I'I?(f2 can be computed directly by the internal degrees of
freedom.

For the projection I—If we need to compute the integrals

/ Vmg- Vv, for|B| <k
P
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Extension to 3D

The local VEM spaces in three dimensions

Integrating by parts:

Vm5~Vvh——/

P P

The first term is an internal moment of order k — 2 and can be computed
directly from the internal degrees of freedom.

The second term is a moment of order kK — 1 on the face f.

This means that we can choose
vhir € Wi(f) for each face f

because in W, (f) (the enhanced Vi(f)) we can compute the L? projector
I'Icf) «» and hence all moments up to order k.
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Extension to 3D

The local VEM spaces in three dimensions

The VEM approximate bilinear form for the Laplace equation in 3D is:
af (up, vi) = /Pvnfuh VI v+ S((F =T ), (1 = T ) vi)

where this time
S(pi, ;) = hpdjj.

If we want to approximate a more general operator, we have to compute
N9 Vv, and the L2 projector M9.

I'|271Vvh can be computed directly from the degrees of freedom.

For the L? projector I'I2 we can enhance the space as shown in two
dimensions.
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The VEM paradigm

We believe that the Virtual Element Method has a wide range of
applicability. The keypoints of VEM are:

@ The definition of the local finite element spaces and of the associated
degrees of freedom. These spaces contain polynomials plus other
functions which are not computable.

@ The costruction of variuos projectors onto polynomial spaces.

@ The definition of a consistent and stable bilinear form using these
projectors which is the VEM approximation of the exact bilinear form.

@ A general theorem that guarantees convergence for a consistent and
stable approximate bilinear form.
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The VEM paradigm

The VEM paradigm is currently being applied for various problem,
including:

e H(div) and H(curl) VEM [Beirao da Veiga, Brezzi, Marini, R.]

@ Non conforming VEM [Ayuso, Lipnikov, Manzini| talk this afternoon

e SUPG stabilization of convection-dominated equations [Cangiani,
Manzini, R., Sutton]

C™ finite elements [Beirao da Veiga, Manzini]

Eigenvalue problems [Beirao da Veiga, Mora] next talk
Elasticity Problems [Beirao da Veiga, Brezzi, Marini, Paulino]
Plates and Shells [Brezzi, Marini]

Helmholtz equations [Perugia, Pietra, R.]

e 6 6 o o
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Numerical Experiments

Joining meshes 1

joined .
832 polygons, Ndof=6849, hma =1.77e-01, h 4.0 VEM solution
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Numerical Experiments

Joining meshes 1
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Numerical Experiments

Joining meshes 2

joined
852 polygons, Ndof=7033, hmax =1.77e-01, hmean =4.0 VEM solution
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Numerical Experiments

Joining meshes 2
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VEM solution
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Numerical Experiments

Robustness
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Numerical Experiments

Robustness
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Numerical Experiments

Robustness

We solved the equation

—Au+u=f
on the unit square with k = 2 where f and the Dirichlet boundary
condition are taken in such a way that the exact solution is

u(x, y) = sin(2x + 0.5) cos(y + 0.3) + log(1 + xy)

A. Russo (Milan) VEM
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Robustness

degeneracy
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Thanks for your attention!

alessandro.russo@unimib.it
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