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QOutline — Take Away Points

e A Model Problem & Applications

e Two Competing Goals: Solving or Upscaling?

e The Zoo of Multiscale Schemes & their Analysis

e A Fully Robust Variational Multiscale Method (VMM)

(for locally quasi-monotone high contrast coefficients)
e Robust Quasi-Interpolation Operators
e Uniform Weighted Poincaré Inequalities
o Generalised Multiscale Finite Elements (GMsFEM)
@ An Abstract Bramble—Hilbert Lemma

@ Outlook: Fully Robust VMM for General Coefficients
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Model Problem

o Elliptic PDE in bounded domain Q c RY, d =2,3

V- (aVu)=f + suitable BCs on 9Q
Issues adressed even more pronounced in other equations, e.g. transport.

e Strongly varying coefficient av(x) > 1 (otherwise rescale eqn.)
(scalar c, or quasi-isotropic tensor o with A\pax(a) ~ Amin())

o FE discretisation (p.w. lin. V). a(up, vi) = (£, vp) Yvj, € V
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Model Problem

o Elliptic PDE in bounded domain Q c RY, d =2,3

V- (aVu)=f + suitable BCs on 9Q
Issues adressed even more pronounced in other equations, e.g. transport.

e Strongly varying coefficient av(x) > 1 (otherwise rescale eqn.)
(scalar c, or quasi-isotropic tensor o with A\pax(a) ~ Amin())

o FE discretisation (p.w. lin. V). a(up, vi) = (£, vp) Yvj, € V

@ Two possible aims:

o h-optimal, a-robust parallel solver (fine mesh 7", o resolved)

o H-optimal(?), a-robust approximation in coarse space V"
(c not resolved: “Upscaling” — no scale separation!)

e Key Question (for both): Robust coarsening
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Applications: Simulation in Heterogeneous Media

@ Subsurface flow, e.g. in an oil reservoir
(SPE10 benchmark)

E] 5 oA > 2 v o " 2 g

@ Structural Mechanics, e.g. in bone or carbon fibre composites

@ ... many more ...
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Goals (« resolved on fine mesh 7")

e Complicated variation of a(x) on many scales (h < diam(2))
Hard to resolve by “geometric’ coarse mesh!

e High contrast: o, := miny a(x) < maxy @(x) =: amax
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Goals (« resolved on fine mesh 7")

e Complicated variation of a(x) on many scales (h < diam(2))
Hard to resolve by “geometric’ coarse mesh!

e High contrast: o, := miny a(x) < maxy @(x) =: amax
o Goal A: Efficient & scalable multilevel parallel solver

o robust w.r.t. mesh size h (& w.r.t. problem size n)

o robust w.r.t. coefficients a(x) !

+ underpinning theory that guides choice of components | My background!
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@ Goal B: Simulate on coarse mesh where o is not resolved!
e Discretisation in “special” coarse space V" — Upscaling

e But: Quality of approximation depends on (subgrid) variation
& contrast in a1 Strong links, but theory less developed.
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Goals (« resolved on fine mesh 7")

e Complicated variation of a(x) on many scales (h < diam(2))
Hard to resolve by “geometric’ coarse mesh!

High contrast: o, := ming a(x) < maxx (x) = Qmax

Goal A: Efficient & scalable multilevel parallel solver
o robust w.r.t. mesh size h (& w.r.t. problem size n)

o robust w.r.t. coefficients a(x) !

+ underpinning theory that guides choice of components | My background!

Goal B: Simulate on coarse mesh where « is not resolved!

e Discretisation in “special” coarse space V" — Upscaling

e But: Quality of approximation depends on (subgrid) variation
& contrast in a1 Strong links, but theory less developed.

Important. Goal B not necessarily cheaper than Goal A
(unless we have periodicity, scale separation, multiple RHSs, (mildly)

nonlinear, or (slowly varying) time-dependent problem)
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Types of Multiscale Methods (incomplete list)

° Adaptive FEs .., [Babuska, Rheinboldt, 1978]

Generalised FEs [Babuska, Osborn, 1983]

Numerical Upscaling ..., [Durlofsky, 1991]

Multiscale Finite Elements [Hou, Wu, 1997], ...

Variational Multiscale Method [Hughes et al, 1998]

Multigrid Based Upscaling [Moulton, Dendy, Hyman, 1998]
Multiscale Finite Volume Methods [Jenny, Lee, Tchelepi, 2003]
Heterogeneous Multiscale Method [E, Engquist, 2003]

Multiscale Mortar Spaces [Arbogast, Wheeler et al, 2007]
(& other DD based methods)

Adaptive Multiscale FVMs/FEs [Durlovsky, Efendiev, Ginting, 2007]
Energy minimising bases [Dubois, Mishev, Zikatanov, 2009]
Locally spectral (Generalised MsFEs) [Efendiev, Galvis, Wu, 2010]
. etc ...
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Simplifying Assumptions & Theory (incomplete list of refs)

@ Periodic = Homogenisation theory ..., [Hou, Wu, 1997],... (most!)
@ Scale Separation ..., [Abdulle, 2005], ...
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Simplifying Assumptions & Theory (incomplete list of refs)

@ Periodic = Homogenisation theory ..., [Hou, Wu, 1997],... (most!)
@ Scale Separation ..., [Abdulle, 2005], ...

© Inclusions and simple interfaces [Chu, Graham, Hou, 2010]

(high contrast, no periodicity, no scale separation)

@ Bound in special flux norm [Berlyand, Owhadi, 2010]

(high contrast, no periodicity, no scale separation)
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© Inclusions and simple interfaces [Chu, Graham, Hou, 2010]

(high contrast, no periodicity, no scale separation)

@ Bound in special flux norm [Berlyand, Owhadi, 2010]
(high contrast, no periodicity, no scale separation)

© Low contrast ..., [Babuska, Lipton, 2010], [Owhadi, Zhang, 2011],
[Grasedyck, Greff, Sauter, 2011], [Malqvist, Peterseim, 2012],

[Henning, Peterseim, 2013], ... (no periodicity or scale separation)
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(high contrast, no periodicity, no scale separation)

© Low contrast ..., [Babuska, Lipton, 2010], [Owhadi, Zhang, 2011],
[Grasedyck, Greff, Sauter, 2011], [Malqvist, Peterseim, 2012],

[Henning, Peterseim, 2013], ... (no periodicity or scale separation)

@ Weighted L2-norm (using DD theory) [RS, Zikatanov, in prep]
(weighted Poincaré, stable quasi-interpolant, weighted Bramble-Hilbert)

o Uniform weighted Poincaré inequalities [Pechstein, RS, 2011+]

e Stability and approximation of Clement-type quasi-interpolant
[RS, Vassilevski, Zikatanov, 2012]

o Abstract Bramble-Hilbert Lemma [RS, Vassilevski, Zik., 2011]
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A Variational Multiscale Method [Malqyist, Peterseim, 2012]

@ (coarse) FE mesh 7y with mesh width H
@ associated P1-FE space Vy := span{CDJ’-" lj=1,...,N}
@ Quasi-interpolation operator Jy : V), — Vi [Carstensen, 1999]
ith
wi - Z (v, CDJH)LQ(Q) oH
H = - 7 .
- (Lo

(T invertible on Vu!)

Decomposition

Vy=Vya V) with V| :=kemeldy={veV,|Iyv=0}
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A Variational Multiscale Method [Malqyist, Peterseim, 2012]

@ (coarse) FE mesh 7y with mesh width H
@ associated P1-FE space Vy := span{d)J’-" lj=1,...,N}
@ Quasi-interpolation operator Jy : V), — Vi [Carstensen, 1999]
ith
. oy - Z (v, ® i) 4
H = - 7 7 .
- (Lo

(Jy invertible on Vy!)

Example

+  u—(Julv) Tnu

eVvf
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Localizable Orthogonal Decomposition

@ For each v € V), define the fine scale projection Pfv € V,f by

a(Pfv,w) = a(v,w) forall we Vf

a—Orthogonal Decomposition

Vh = VE‘SGE V; and a( \/I'_I"S’ V;) —0 with Vlr_lns — (1_ Pf)VH
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Localizable Orthogonal Decomposition

o For each v € V), define the fine scale projection Pfv V,f by

a(Pfv,w) =a(v,w) forallwe Vf

a—Orthogonal Decomposition

Va= VoV and a(VJ5, Vi) =0 with VJ*:= (1- P )Vy

Example
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Modified (multiscale) nodal basis

° {CDJH |j=1,...,N} C Vy denotes classical nodal basis

° gojf = Pfd>J"-" € V/ denotes the fine scale correction of CDJH

Ideal multiscale FE space

Example
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Exponential decay and localisation

@ Define nodal patches wj i of k-th order around vertex xj’" of Ty

There exists a v < 1 such that \cpj]Hl(Q\wj DS ’yk\goﬂ,_p(g) .
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Exponential decay and localisation

@ Define nodal patches wj i of k-th order around vertex xj’" of Ty

There exists a v < 1 such that \cpj]Hl(Q\wj DS ’yk\goﬂm(g) .

@ Practical multiscale method: Fix k and define the localised
correction ¢f , € Vi(wjx) == {v € V] |suppv Cwji} st.

a(pf o w) = a(®f w) forall we Vi(wi)

Localized multiscale FE spaces

VI—Ti = span{q)ﬁ—@j,k |lj=1,...,N}
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The Multiscale Coarse Problem

Multiscale approximation
Seek ufy € VI such that

a(ufiS,v) = (f,v)  forall ve VI

o dim V,_Tsk =dim Vy = N & basis functions have local support

@ Overlap of the supports is proportional to the parameter k
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The Multiscale Coarse Problem

Multiscale approximation
Seek ufy € VI such that

a(ufiS,v) = (f,v)  forall ve VI

o dim V,_Tsk =dim Vy = N & basis functions have local support

@ Overlap of the supports is proportional to the parameter k

Theorem (Malqvist & Peterseim, 2012)

u— ufi%lm@) S KTH Y N Fll-10) + HIlf @) + u— unling)

Thus, provided k > Iogv(%) and h is suff'ly small we have optimal
O(H) convergence without any assumptions on scales or regularity.

Similarly, O(H?) convergence in L?-norm using an Aubin-Nitsche argument.
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Numerical Experiment (low contrast)

10712 0 1‘1 1‘2 1‘3 1 4
f=1and ujpo =0 0 0 0 0 0
H:2_1 2_2 2_7 |U7u,§-[nsk|H
) ) ) HQ)
_ D HEPE) s dof
h=279 k=/2log(1/H)] I kit
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Numerical Experiment (high contrast)

10000)

100f

10
f=1and ulpo =0 10
H=2"1t22 .27
h=279 k=[2log(1/H)]

0 10’ 10° 10° *

u— up®
—| H’k|H1(Q) vs. #dofs
|U|H1(Q)
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Numerical Experiment (high contrast)

10000)

100f

f=1and ujpo =0 10° 10' 10° 10° *
H=2"1t22 .27

[|u— Uﬁ,skHB(Q)
h=279 k=[2log(1/H)] N T T

vs. #dofs
l U||L2(Q)
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But unfortunately ~ := exp ( %) and so v — 1 as the

contrast 2= — oo. The hidden constant depends also on 2m=
min min
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But unfortunately ~ := exp ( %) and so v — 1 as the

contrast 2= — oo. The hidden constant depends also on 2m=
min min

4

Theorem useless for high contrast !
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A contrast-robust theory

Now, instead of
@ working in standard H' and L°-norm

@ and using the simple norm equivalence

amin|V’H1(Q) < vlla < O‘maX|V‘H1(Q)

we want to work

e directly in the energy norm ||v||,. = (fwoz]Vv|2dx)1/2 and
0w i= (fw av? dx)l/2

@ and use a coefficient—weighted quasi-interpolant

the weighted L2-norm ||v|

@ as well as a weighted Poincaré type inequality and a
weighted inverse type inequality
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Main Result (Peterseim & RS, 2013+)

If there exists a linear, continuous quasi-interpolation operator
Jy : Vp — Vi and two generic constants C; and C3 such that

(Qll) (jH|VH)_1jHVH = vy, forall vy € Vy
(Q12) HF?|lv =Tnvl o 7+ llv = Tuvl3 7 < CllvIZe, .
forallve V,and T € Ty

(QI3) for all viy € Vi there exists a v € V}, s.t. Tyv = vy,
supp v C supp vy and ||[v]|2 < Gsllvy]|a-

then (with some universal constant m < 1)

—k
m [0 me H
lu—uflla S (22) " S 1l -2y + —73 1 Loy + 1= ula

Qmin
min

Thus, provided k = In(%%) and h suff’ly small we have optimal
O(H) convergence without assumptions on regularity or contrast.

V.

Again, O(H2) convergence in L2 -norm follows by an Aubin-Nitsche argument.
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A suitable quasi-interpolation operator — Assumption (QI2)

e Now adapt theory developed for 2-level Schwarz to prove (QI2)
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A suitable quasi-interpolation operator — Assumption (QI2)

e Now adapt theory developed for 2-level Schwarz to prove (QI2)

@ For simplicity assume o p.w. constant w.r.t. some grid 7,,, with
h < n < H, but not by Ty (Th C Ty C Th nested)

@ Forevery T € Ty define wr:={T' : TNT #0}.
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A suitable quasi-interpolation operator — Assumption (QI2)

e Now adapt theory developed for 2-level Schwarz to prove (QI2)

@ For simplicity assume o p.w. constant w.r.t. some grid 7,,, with
h < n < H, but not by Ty (Th C Ty C Th nested)

@ Forevery T € Ty define wr:={T' : TNT #0}.
Lemma (Old) [RS, Vassilevski, Zikatanov, SINUM 2012]

For all T € Ty, let C,'? > 0 be the best constant s.t. for all v € V),
the following weighted Poincaré inequality holds:

infeer ||V — &l1§ qoy < CF diam(wr)?(IVV|3,,  (WPI)

(with a slight variation near Dirichlet boundaries). Then

2 - .
HP2 v = 3uvi§ oz + v =Tnvilr S Glviz.,  (QI2)

avdx

o and G = max CF.

LunP(“’J’-")
fsupp(dvl.") adx *J TETH

with Jpv = >
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A suitable quasi-interpolation operator — Assumption (QI2)

@ Now adapt theory developed for 2-level Schwarz to prove (QI2)

@ For simplicity assume a p.w. constant w.r.t. some grid 7,, with
h < n < H, but not by Tx (Th C Ty C Th nested)

@ Forevery T € Ty define wr:={T' : TNT #0}.

Lemma (New) [Peterseim, RS, 2013+])
For all T € Ty, let C,'g > 0 be the best constant s.t. for all v € V},
the following weighted Poincaré inequality holds:
infee [V — £l1§ qwr < CF diam(wr (V|3 (WPI)
infeer ||v vawr < Cr diam(wr v[[Zwr
(with a slight variation near Dirichlet boundaries). Then
—2 -
HZ2 v = TpvlEar +llv=Tnvilir S Gllvi3.,  (Q2)

N H
L~ Z (av, @) 2@) yy H P
Wlth JHV = m cbj and C2 ~ ; maXTe’TH CT

J=1 (price to pay to also get (QI3))
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Approximation result in the weighted L?>—norm (p.w. linears)

Corollary [RS, Zikatanov, in prep]

Assume that the PDE solution u € H'*$(Q), for some s > 0. Then

(under the same assumptions as above)

inf flu — < CH |l -
legvHHu Villoe S GH[Ifllp-1(q)
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Approximation result in the weighted L?>—norm (p.w. linears)

Corollary [RS, Zikatanov, in prep]

Assume that the PDE solution u € H'*$(Q), for some s > 0. Then

(under the same assumptions as above)

inf flu — < CH |l -
legvHHu Villoe S GH[Ifllp-1(q)

@ Possibly not sharp (w.r.t. H), but needs minimal regularity

@ Sharp w.r.t. coefficient variation. We can show lower bound:
iie. C,> H™! = no approximation!

o Constant C, can be independent of «
(local quasi-monotonicity; see below)

o Extends readily to other “nodal” spaces, such as MsFEs
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When is Poincaré constant independent of contrast in ?

o Careful theory in [Pechstein, RS, IMAJNA 2012] linking
robustness to quasi-monotonicity!

@ Bounds for the effective Poincaré constant C7’3 in 3D :

Darker colour means higher permeability.

X*

Cs

o
—~~
S
N

0(1) (91+|ogg

I i C’D e o‘i (i.e. not robust!)

20 / 37
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Poincaré’s inequality

Domain Q C RY (open, bounded, connected set). 3C > 0 s.t.

. 2) . 2 2 1
V'QEQHU—VHB(Q) < Cdiam (Q)° |ulfpqy Vo€ H(Q).

@ C depends only on shape of 2, not on diam (Q)

@ Infimum attained at
1 /
* —Q
Y'=1u"=——= [ udx
Q[ Jo

@ Inequality C) also works for

_ 1 /

X

=U" = — u dx
7 1 X] Jx

where X C Q subset or (d — 1)-dimensional manifold
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Weighted Poincaré type inequality

For ac € L°°(2) uniformly positive, we define
Hv||%2(ﬂ),a = /Qa lv|?dx and ’Vﬁ/l(ﬂ)ya = /Qa |Vv|?dx

Clearly,

—Q
lu =7y < € max
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Weighted Poincaré type inequality

For ac € L°°(2) uniformly positive, we define
Hv||%2(m,a = /Qa lv|?dx and ]v|f_,1(Q)7a = /Qa |Vv|?dx

Clearly,

B X .
lu =@y < € mag o0 diam (@) fulin(g) o

Question

Can we find C” independent of variation & contrast in «
such that

: 2 P2
v'ngHu_’YHL?(Q),a < Culp).a

for some class of weights o : 2 — R ?
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Model Case #1

Assume Q = Q; U Qs (% “well-shaped”)
with interface N5 := 9Q; N 0 Q, L,

and g, = ay = const Q,
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Model Case #1

Assume Q = Q1 U Qs (Q “well-shaped”)
with interface N5 := 9Q; N 0 Q, L,

and g, = ay = const Q,

Apply standard Poincaré type inequality on Q7 and 5, i.e.

lu =122, < Cdiam () [ulfng,)  Vue HY ()

Then multiplying by ax and adding implies

lu =72 {0 < Cdiam (Q) [uff ) o

with C depending on (the shape of) Q4 and ;7 but not on o !
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Model Case #2

Assume Q = Q; UQ U Q3 (2 “well-shaped”)
st. ajg, = ax = const and a3 > as > a1

Define manifold X* := 91 N 0€23
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Model Case #2

Assume Q = Q; UQ U Q3 (2 “well-shaped”)
st. ajg, = ax = const and a3 > as > a1

Define manifold X* := 91 N 0€23

Treat €7 and Q3 as before, and

lu =T | Bapye = @2 llu—T 320,00y
S [6%) Cdiam (Q)2 |u‘ill(QQUQ3)
< Cdiam(Q)z{/ a2|Vu|dx—|—/ ap |Vu|dx}
Q, Q3 N
<as
<

C diam (Q)° |u[3r(0,00,) o

Again C depends on (the shape of) Q4 and X*, but not on o !
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Model Case #2

Assume Q = Q; U UQ3 (2« “well-shaped™”)
st. ajg, = ax = const and a3 > apx > ag

Define manifold X* := 021 N 023

However, if a3, as > a3 then such an inequality cannot exist:

" Counter example:
o ar=ax=landaz =e kK1
1 € 1
| | | | 2
0 ‘ ‘ 1 ox HUHLZ(QLQ ~1

Ut ) ~ €
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Model Case #3

Assume Q = Q1 U---UQs  (Q “well-shaped”)
s.t. o, = o = const  (arbitrary!)

Define “manifold” X* := | J,_, 9Q
(non-empty!)
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Model Case #3

Assume Q = Q1 U---UQs  (Q “well-shaped”)
s.t. o, = o = const  (arbitrary!)

Define “manifold” X* := | J,_, 9Q

(non-empty!)

Here we can use discrete Poincaré (or Sobolev) inequalities:

Let V" be p.w. linear FEs (quasi-uniform 7") and Q union of a
few (coarse) simplices (quasi-uniform of size O(n)). Then (in 2D):

_X* n
|u— % H%Q(Qk) < C(1+log <E)) n? ’uﬁ'll(ﬂk) Yu e VI(Q)
where 7 := maxy diam (Q,) and %" = u(X*).

Adding up ~~ robust weighted discrete Poincaré type inequality
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Theorem (Weighted Poincaré Ineq.) [Pechstein, RS, IMAJNA'12]

Let xmax € @ be the point where k(x) attains its maximum on @.
If there exists a path P from every point x € w to Xmnax such that k never

decreases along P (quasi-monotonicity), then there exists a constant
CP > 0 independent of h, k(x) and diam(w) such that

im‘/oz(x)(v—'y)2 < CPdiaun(oJ)z/oz(x)|Vv|2 Vv e V.

YER J, -
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Theorem (Weighted Poincaré Ineq.) [Pechstein, RS, IMAJNA'12]

Let xmax € @ be the point where k(x) attains its maximum on @.
If there exists a path P from every point x € w to Xmnax such that k never

decreases along P (quasi-monotonicity), then there exists a constant
CP > 0 independent of h, k(x) and diam(w) such that

im‘/oz(x)(v—'y)2 < CPdiam(w)z/oz(x)|Vv|2 Vv e V.

YER J, -

@ More details in [Pechstein, RS, IMAJNA 2012].
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Main Theorem (Peterseim & RS, 2013+)

If there exists a linear, continuous quasi-interpolation operator
Jy : Vp — Vi and two generic constants C; and C3 such that

(Qll) (jH|VH)_1jHVH = vy, forall vy € Vy
(Q12) HF?|lv =Tnvl o 7+ llv = Tuvl3 7 < CllvIZe, .
forallve V,and T € Ty

(QI3) for all viy € Vi there exists a v € V}, s.t. Tyv = vy,
supp v C supp vy and ||[v]|2 < Gsllvy]|a-

then (with some universal constant m < 1)

Omin

—k
m [0 me H
lu—uflla S (22) " S 1l -2y + —73 1 Loy + 1= ula

min

Thus, provided k = In(%%) and h suff’ly small we have optimal
O(H) convergence without assumptions on regularity or contrast.

V.

Again, O(H2) convergence in L2 -norm follows by an Aubin-Nitsche argument.
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Assumptions (QI1) and (QI3)

o (QI1): Let vy =3, ’qu)JH € Vy. Then Jyvy = ZJ(AN/”Y)jq)}-I
where M is a scaled mass matrix on Vjy which is invertible.
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Assumptions (QI1) and (QI3)

o (QI1): Let vy =3, ’qu)JH € Vy. Then Jyvy = Zj(M’Y)jq)_]l.-l
where M is a scaled mass matrix on Vjy which is invertible.

e (QI3) is more difficult, but under the above assumptions on
the coefficient (i.e. p.w. const. w.r.t. 7;,), it can be shown similar

2
to Lemma 1 in [Malqvist, Peterseim '12] with Cs = (%) .
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Assumptions (QI1) and (QI3)

o (QI1): Let vy =3, ’qu)JH € Vy. Then Jyvy = ZJ(AN/”Y)jq)}-I
where M is a scaled mass matrix on Vjy which is invertible.

e (QI3) is more difficult, but under the above assumptions on
the coefficient (i.e. p.w. const. w.r.t. 7;,), it can be shown similar

2
to Lemma 1 in [Malqvist, Peterseim '12] with Cs = (%) .

In summary, we do get optimal, contrast independent
convergence rates, but so far only under fairly stringent
assumptions on the type of coefficient variation
(i.e. locally quasi-monotone & p.w. constant w.r.t. 7, for moderate H/n)

Rob Scheichl (Bath) LMS Symposium, Durham, July 2014 Rigorous Numerical Upscaling at High Contrast 28 / 37



Numerical Experiment |

f=1and ujpo =0
H=2"12"2 .25
h=2"" k=2

u—up®
—| H’k|Hl(Q) vs. #dofs
lulH (@)

(black = unweighted; red = weighted)
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Numerical Experiment Il

f=1and ujpo =0
H=2"122 .25
h=2"" k=2

u—up®
—| H’k|Hl(Q) vs. #dofs
lulH (@)

(black = unweighted; red = weighted)
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Ideas for non-quasi-monotone coefficients

aEEEER
EEEEEN
EEEEEN
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Ideas for non-quasi-monotone coefficients

For high permeability inclusions should be able to use e
MsFEM instead of Vjy as initial coarse space. Analysis Emmmmnf
based on “XZ-identity” [Xu, Zikatanov, 2002] and

[Graham, Lechner, RS '07].
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Ideas for non-quasi-monotone coefficients

For high permeability inclusions should be able to use
MsFEM instead of Vyy as initial coarse space. Analysis
based on “XZ-identity” [Xu, Zikatanov, 2002] and
[Graham, Lechner, RS '07].

£ 4
But in general when « is not quasi-monotone on all wk
— need to adapt grid/supports or “enrich” the space !
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Local energy minimising coarse spaces (incl. GMsFEM)

o Suppose {Q,}L_; is overlapping partition of Q.

Local Energy Minimization subject to Functional Constraints

For each subdomain €2y, assume that we have a collection of linear
functionals {f;;}™ C Vj()" and let

WV, : = arg min vl|? subject to (Vi) = i .
0 gvevh(ﬂe)ll 15,0, ] 1k(Veyg) = djk
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Local energy minimising coarse spaces (incl. GMsFEM)

o Suppose {Q,}L_; is overlapping partition of Q.

Local Energy Minimization subject to Functional Constraints

For each subdomain €2y, assume that we have a collection of linear
functionals {f;;}™ C Vj()" and let

WV, : = arg min vl|? subject to (Vi) = i .
0 gvevh(ﬂe)ll 15,0, ] 1k(Veyg) = djk

@ Now define global coarse space
VH = span{d>g7j = Ih (Xfwf,j) = ﬁ, j = ]., mg}

i.e. glue together local energy minimising bases via partition of unity {x¢}
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Local energy minimising coarse spaces

Theorem [RS, Vassilevski, Zikatanov, MMS 2011]

Let v € V). Then

2

=2 2 2
HT ”V_jHVHO,a,T+||V_3HV||a,T S a,wT

~

v

where Jyv = Zéﬁzl ijzél fg,j(v)dDZj is the quasi-interpolant.
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Local energy minimising coarse spaces

Theorem [RS, Vassilevski, Zikatanov, MMS 2011]

Let v € V). Then

2

-2 2 2
HT ”V_jHVHO,a,T+||V_3HV||a,T S a,wT

~

v

where Jyv = Zéﬁzl ijzél fg,j(v)tsz is the quasi-interpolant.

@ Proof follows from a (new) abstract approximation result
related to the Bramble-Hilbert Lemma applied locally on
each Q, to the local quasi-interpolant ;v = Zj foj(V)Wy.
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Local energy minimising coarse spaces

Theorem [RS, Vassilevski, Zikatanov, MMS 2011]
Let v € V). Then

-2 2 2
HZ2 v = Invil e, r + v =Tnvil3r S IvIZ.,

where Jyv = Ze 1 Z " fj(v )¢Zj is the quasi-interpolant.

@ Proof follows from a (new) abstract approximation result
related to the Bramble-Hilbert Lemma applied locally on
each Q, to the local quasi-interpolant ;v = Zj foj(V)Wy.

e An example of a functional is f; (v fQ aVy jvdx
which leads to local eigensolves (GMsFEM) [Efendiev et al '10]
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Local energy minimising coarse spaces

Theorem [RS, Vassilevski, Zikatanov, MMS 2011]
Let v € V). Then

-2 2 2
HZ2 v = Invil e, r + v =Tnvil3r S IvIZ.,

where Jyv = Ze 1 Z " fj(v )¢Zj is the quasi-interpolant.

@ Proof follows from a (new) abstract approximation result
related to the Bramble-Hilbert Lemma applied locally on
each Q, to the local quasi-interpolant ;v = Zj foj(V)Wy.

e An example of a functional is f; (v fQ aVy jvdx
which leads to local eigensolves (GMsFEM) [Efendiev et al '10]

@ But also other functionals possible [RS, Vassilevski, Zikatanov '12]
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An abstract Bramble—Hilbert Lemma

Suppose V C H with Hilbert space (7, || - ), a(-,-) an abstract
symmetric continuous bilinear form on V xV and {f,}]_, CV'.

Define for all v € V

Vi = arg ‘r/nel\r} lv|]2,  subject to fi(vk) =0j j,k=1,....,m.
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An abstract Bramble—Hilbert Lemma

Suppose V C H with Hilbert space (7, || - ), a(-,-) an abstract
symmetric continuous bilinear form on V' x V and {f, }, C V'.

Define for all v € V

Vi = arg ‘r/nel\r} lv|]2,  subject to (k) =0 j,k=1,...,m.

Make the following assumptions:

Al. ais positive semi-definite and s.t. | - |, and +/||v|]? + |v|2
define a semi-norm and a norm on V/, respectively.

A2. For all g € R™ there exists a vq € V with

fiu(va) = ak, and |lvgll S cqllall2rm)-

A3. V2 < v+ Sy Ifk(v)?, forall veV.
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An abstract Bramble—Hilbert Lemma

Theorem (RS, Vassilevski, Zikatanov, MMS 2011)

Let Assumptions A1-3 hold. Then wu =), fi(u)iy satisfies
|mula < |ula and lu—mul| <+/ciluls forallue V.

(Note that this is independent of the constants ¢ and c¢r in A2 and A3.)
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An abstract Bramble—Hilbert Lemma

Theorem (RS, Vassilevski, Zikatanov, MMS 2011)

Let Assumptions A1-3 hold. Then wu =), fi(u)iy satisfies
|mula < |ula and lu—mul| <+/ciluls forallue V.

(Note that this is independent of the constants ¢ and c¢r in A2 and A3.)

Proof.

@ Given u € V, mu minimizes energy subject to f,(v) = fi(u).
Thus it is a projection and |7ul, < |ul,.
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An abstract Bramble—Hilbert Lemma

Theorem (RS, Vassilevski, Zikatanov, MMS 2011)

Let Assumptions A1-3 hold. Then wu =), fi(u)iy satisfies
|mula < |ula and lu—mul| <+/ciluls forallue V.

(Note that this is independent of the constants ¢ and c¢r in A2 and A3.)

Proof.

@ Given u € V, mu minimizes energy subject to f,(v) = fi(u).
Thus it is a projection and |7ul, < |ul,.

@ It follows from A3 and the fact that fi(v — wv) = 0 that

m
v —7v|]? < Ca|V—7TV|§+CfZ|f(V—7TV)|2 = c,|v—7v]?
=1
< Gl —AlVE < clrfIVE < clv
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In our specific model problem considered above

@ Assumption A1 is naturally satisfied on any subdomain €
with H = L5(Q) and [[v]| = Jq, av?dx.

@ Assumption A2 simply means the functionals {f;} should be
continuous and linearly independent.

@ Coarse space robustness reduced to verifying Assumption A3

e For one functional reduces to (WPI) and quasi-monotonicity.

o For more then one functional opens possibility of coefficient
robustness even for non-quasi-monotone coefficients.
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In our specific model problem considered above

@ Assumption A1 is naturally satisfied on any subdomain €
with H = L5(Q) and [[v]| = Jq, av?dx.

@ Assumption A2 simply means the functionals {f;} should be
continuous and linearly independent.

@ Coarse space robustness reduced to verifying Assumption A3

e For one functional reduces to (WPI) and quasi-monotonicity.

o For more then one functional opens possibility of coefficient
robustness even for non-quasi-monotone coefficients.

More importantly: can be applied also to other problems,
e.g. elasticity, Stokes, ...
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Conclusions & Outlook

@ Upscaling for model elliptic problem at high contrast
(extends to more complicated problems)
@ Analysis difficult without scale separation and at high contrast

@ Robust variational multiscale method

(analysis for locally quasi-monotone coefficients)
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a-orthogonalise basis fcts. (local) — new multiscale space V}J*
Leads to uniform H-optimal convergence (in energy & L?)
Bramble-Hilbert: uniform L?-approx. with Vi =GMsFEM

(for general coefficients)

Question is how to (formulate and) prove (QI2-4) in that case.
Start by doing more practical investigations!
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Conclusions & Outlook

@ Upscaling for model elliptic problem at high contrast

(extends to more complicated problems)
@ Analysis difficult without scale separation and at high contrast

@ Robust variational multiscale method

(analysis for locally quasi-monotone coefficients)
o Philosophy & New theoretical tools:

o Start with Vy that has uniform, stable [?-approx. properties
Find stable, weighted quasi-interpolator (weighted Poincaré)
a-orthogonalise basis fcts. (local) — new multiscale space V}J*
Leads to uniform H-optimal convergence (in energy & L?)
Bramble-Hilbert: uniform L?-approx. with Vi =GMsFEM

(for general coefficients)

Question is how to (formulate and) prove (QI2-4) in that case.
Start by doing more practical investigations!

@ Some (sub-optimal) energy-norm estimates for GMsFEM in
[Efendiev, Galvis, Wu, JCP '11], [Efendiev, Galvis, Li, Presho '13]
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