Rigorous Numerical Upscaling of Elliptic Multiscale Problems at High Contrast

Robert Scheichl

Department of Mathematical Sciences University of Bath

Joint work with **Daniel Peterseim** (Bonn)

based also on work with C Pechstein (Linz), PS Vassilevski (LLNL), LT Zikatanov (Penn State)

LMS-EPSRC Research Symposium "Building Bridges ...", Durham, 8th July 2014

Outline – Take Away Points

- A Model Problem & Applications
- Two Competing Goals: Solving or Upscaling?
- The Zoo of Multiscale Schemes & their Analysis
- A Fully Robust Variational Multiscale Method (VMM) (for locally quasi-monotone high contrast coefficients)
- Robust Quasi-Interpolation Operators
- Uniform Weighted Poincaré Inequalities
- Generalised Multiscale Finite Elements (GMsFEM)
- An Abstract Bramble-Hilbert Lemma
- Outlook: Fully Robust VMM for General Coefficients

Outline – Take Away Points

- A Model Problem & Applications
- Two Competing Goals: Solving or Upscaling?
- The Zoo of Multiscale Schemes & their Analysis
- A Fully Robust Variational Multiscale Method (VMM) (for locally quasi-monotone high contrast coefficients)
- Robust Quasi-Interpolation Operators
- Uniform Weighted Poincaré Inequalities
- Generalised Multiscale Finite Elements (GMsFEM)
- An Abstract Bramble-Hilbert Lemma
- Outlook: Fully Robust VMM for General Coefficients

• Elliptic PDE in bounded domain $\Omega \subset \mathbb{R}^d$, d = 2, 3

 $-\nabla \cdot (\boldsymbol{\alpha} \nabla u) = f + \text{suitable BCs on } \partial \Omega$

Issues adressed even more pronounced in other equations, e.g. transport.

- Strongly varying coefficient $\alpha(x) \ge 1$ (otherwise rescale eqn.) (scalar α , or quasi-isotropic tensor α with $\lambda_{\max}(\alpha) \sim \lambda_{\min}(\alpha)$)
- FE discretisation (p.w. lin. V^h): $a(u_h, v_h) = (f, v_h) \forall v_h \in V_h$
- Two possible aims:
 - *h*-optimal, α -robust parallel solver (fine mesh \mathcal{T}^n , α resolved)
 - H-optimal(?), α-robust approximation in coarse space V¹ (α not resolved: "Upscaling" – no scale separation!)
- Key Question (for both): Robust coarsening

• Elliptic PDE in bounded domain $\Omega \subset \mathbb{R}^d$, d = 2, 3

 $-\nabla \cdot (\boldsymbol{\alpha} \nabla u) = f + \text{suitable BCs on } \partial \Omega$

Issues adressed even more pronounced in other equations, e.g. transport.

- Strongly varying coefficient $\alpha(x) \ge 1$ (otherwise rescale eqn.) (scalar α , or quasi-isotropic tensor α with $\lambda_{\max}(\alpha) \sim \lambda_{\min}(\alpha)$)
- FE discretisation (p.w. lin. V^h): $a(u_h, v_h) = (f, v_h) \forall v_h \in V_h$
- Two possible aims:
 - *h*-optimal, α -robust parallel **solver** (fine mesh \mathcal{T}^h , α resolved)
 - *H*-optimal(?), α-robust approximation in coarse space V^H (α not resolved: "Upscaling" – no scale separation!)
- Key Question (for both): Robust coarsening

Applications: Simulation in Heterogeneous Media

• Subsurface flow, e.g. in an oil reservoir

(SPE10 benchmark)

• Structural Mechanics, e.g. in bone or carbon fibre composites

• ... many more ...

- Complicated variation of α(x) on many scales (h ≪ diam(Ω)) Hard to resolve by "geometric" coarse mesh!
- High contrast: $\alpha_{\min} := \min_{\mathbf{x}} \alpha(\mathbf{x}) \ll \max_{\mathbf{x}} \alpha(\mathbf{x}) =: \alpha_{\max}$

Goal A: Efficient & scalable multilevel parallel solver

- **robust** w.r.t. mesh size h (\Leftrightarrow w.r.t. problem size n)
- robust w.r.t. coefficients $\alpha(x)$!

+ underpinning theory that guides choice of components

• Goal B: Simulate on coarse mesh where α is not resolved!

- Discretisation in "special" coarse space $V^H
 ightarrow$ Upscaling
- But: Quality of approximation depends on (subgrid) variation & contrast in α ! Strong links, but theory less developed.
- Important. Goal B not necessarily cheaper than Goal A (unless we have periodicity, scale separation, multiple RHSs, (mildly) nonlinear, or (slowly varying) time-dependent problem)

- Complicated variation of α(x) on many scales (h ≪ diam(Ω)) Hard to resolve by "geometric" coarse mesh!
- High contrast: $\alpha_{\min} := \min_{\mathbf{x}} \alpha(\mathbf{x}) \ll \max_{\mathbf{x}} \alpha(\mathbf{x}) =: \alpha_{\max}$
- Goal A: Efficient & scalable multilevel parallel solver
 - **robust** w.r.t. mesh size h (\Leftrightarrow w.r.t. problem size n)
 - robust w.r.t. coefficients $\alpha(x)$!

+ underpinning theory that guides choice of components

My background!

- Goal B: Simulate on coarse mesh where α is not resolved!
 - Discretisation in "special" coarse space $V^H
 ightarrow$ Upscaling
 - But: Quality of approximation depends on (subgrid) variation
 & contrast in α ! Strong links, but theory less developed.
- Important. Goal B not necessarily cheaper than Goal A (unless we have periodicity, scale separation, multiple RHSs, (mildly) nonlinear, or (slowly varying) time-dependent problem)

- Complicated variation of α(x) on many scales (h ≪ diam(Ω)) Hard to resolve by "geometric" coarse mesh!
- High contrast: $\alpha_{\min} := \min_{\mathbf{x}} \alpha(\mathbf{x}) \ll \max_{\mathbf{x}} \alpha(\mathbf{x}) =: \alpha_{\max}$
- Goal A: Efficient & scalable multilevel parallel solver
 - **robust** w.r.t. mesh size h (\Leftrightarrow w.r.t. problem size n)
 - robust w.r.t. coefficients $\alpha(x)$!

+ underpinning theory that guides choice of components

• Goal B: Simulate on coarse mesh where α is not resolved!

• Discretisation in "special" coarse space V^H \rightarrow Upscaling

My background!

 But: Quality of approximation depends on (subgrid) variation & contrast in α ! Strong links, but theory less developed.

• Important. Goal B not necessarily cheaper than Goal A (unless we have periodicity, scale separation, multiple RHSs, (mildly) nonlinear, or (slowly varying) time-dependent problem)

- Complicated variation of α(x) on many scales (h ≪ diam(Ω)) Hard to resolve by "geometric" coarse mesh!
- High contrast: $\alpha_{\min} := \min_{\mathbf{x}} \alpha(\mathbf{x}) \ll \max_{\mathbf{x}} \alpha(\mathbf{x}) =: \alpha_{\max}$
- Goal A: Efficient & scalable multilevel parallel solver
 - **robust** w.r.t. mesh size h (\Leftrightarrow w.r.t. problem size n)
 - robust w.r.t. coefficients $\alpha(x)$!

+ underpinning theory that guides choice of components

• Goal B: Simulate on coarse mesh where α is not resolved!

• Discretisation in "special" coarse space V^H \rightarrow Upscaling

My background!

 But: Quality of approximation depends on (subgrid) variation & contrast in α ! Strong links, but theory less developed.

• Important. Goal B not necessarily cheaper than Goal A

(unless we have periodicity, scale separation, multiple RHSs, (mildly) nonlinear, or (slowly varying) time-dependent problem)

Types of Multiscale Methods (incomplete list)

- Adaptive FEs ..., [Babuska, Rheinboldt, 1978]
- Generalised FEs [Babuska, Osborn, 1983]
- Numerical Upscaling ..., [Durlofsky, 1991]
- Multiscale Finite Elements [Hou, Wu, 1997], ...
- Variational Multiscale Method [Hughes et al, 1998]
- Multigrid Based Upscaling [Moulton, Dendy, Hyman, 1998]
- Multiscale Finite Volume Methods [Jenny, Lee, Tchelepi, 2003]
- Heterogeneous Multiscale Method [E, Engquist, 2003]
- Multiscale Mortar Spaces [Arbogast, Wheeler et al, 2007] (& other DD based methods)
- Adaptive Multiscale FVMs/FEs [Durlovsky, Efendiev, Ginting, 2007]
- Energy minimising bases [Dubois, Mishev, Zikatanov, 2009]
- Locally spectral (Generalised MsFEs) [Efendiev, Galvis, Wu, 2010]
- ... etc ...

- Periodic \Rightarrow Homogenisation theory ..., [Hou, Wu, 1997],... (most!)
- Scale Separation ..., [Abdulle, 2005], ...
- Inclusions and simple interfaces [Chu, Graham, Hou, 2010] (high contrast, no periodicity, no scale separation)
- Bound in special flux norm [Berlyand, Owhadi, 2010] (high contrast, no periodicity, no scale separation)
- Low contrast ..., [Babuska, Lipton, 2010], [Owhadi, Zhang, 2011], [Grasedyck, Greff, Sauter, 2011], [Malqvist, Peterseim, 2012], [Henning, Peterseim, 2013], ... (no periodicity or scale separation)

 Weighted L²-norm (using DD theory) [RS, Zikatanov, in prep] (weighted Poincaré, stable quasi-interpolant, weighted Bramble-Hilbert)

- Uniform weighted Poincaré inequalities [Pechstein, RS, 2011+]
- Stability and approximation of Clement-type quasi-interpolant [RS, Vassilevski, Zikatanov, 2012]
- Abstract Bramble-Hilbert Lemma [RS, Vassilevski, Zik., 2011]

- Periodic \Rightarrow Homogenisation theory ..., [Hou, Wu, 1997],... (most!)
- Scale Separation ..., [Abdulle, 2005], ...
- Inclusions and simple interfaces [Chu, Graham, Hou, 2010] (high contrast, no periodicity, no scale separation)
- Bound in special flux norm [Berlyand, Owhadi, 2010] (high contrast, no periodicity, no scale separation)
- Low contrast ..., [Babuska, Lipton, 2010], [Owhadi, Zhang, 2011], [Grasedyck, Greff, Sauter, 2011], [Malqvist, Peterseim, 2012], [Henning, Peterseim, 2013], ... (no periodicity or scale separation)

Weighted L²-norm (using DD theory) [RS, Zikatanov, in prep] (weighted Poincaré, stable quasi-interpolant, weighted Bramble-Hilbert)

- Uniform weighted Poincaré inequalities [Pechstein, RS, 2011+]
- Stability and approximation of Clement-type quasi-interpolant [RS, Vassilevski, Zikatanov, 2012]
- Abstract Bramble-Hilbert Lemma [RS, Vassilevski, Zik., 2011]

- Periodic \Rightarrow Homogenisation theory ..., [Hou, Wu, 1997],... (most!)
- Scale Separation ..., [Abdulle, 2005], ...
- Inclusions and simple interfaces [Chu, Graham, Hou, 2010] (high contrast, no periodicity, no scale separation)
- Bound in special flux norm [Berlyand, Owhadi, 2010] (high contrast, no periodicity, no scale separation)
- Low contrast ..., [Babuska, Lipton, 2010], [Owhadi, Zhang, 2011], [Grasedyck, Greff, Sauter, 2011], [Malqvist, Peterseim, 2012], [Henning, Peterseim, 2013], ... (no periodicity or scale separation)
- Weighted L²-norm (using DD theory) [RS, Zikatanov, in prep] (weighted Poincaré, stable quasi-interpolant, weighted Bramble-Hilbert)
 - Uniform weighted Poincaré inequalities [Pechstein, RS, 2011+]
 - Stability and approximation of Clement-type quasi-interpolant [RS, Vassilevski, Zikatanov, 2012]
 - Abstract Bramble-Hilbert Lemma [RS, Vassilevski, Zik., 2011]

- Periodic \Rightarrow Homogenisation theory ..., [Hou, Wu, 1997],... (most!)
- Scale Separation ..., [Abdulle, 2005], ...
- Inclusions and simple interfaces [Chu, Graham, Hou, 2010] (high contrast, no periodicity, no scale separation)
- Bound in special flux norm [Berlyand, Owhadi, 2010] (high contrast, no periodicity, no scale separation)
- Low contrast ..., [Babuska, Lipton, 2010], [Owhadi, Zhang, 2011], [Grasedyck, Greff, Sauter, 2011], [Malqvist, Peterseim, 2012], [Henning, Peterseim, 2013], ... (no periodicity or scale separation)
- Weighted L²-norm (using DD theory) [RS, Zikatanov, in prep] (weighted Poincaré, stable quasi-interpolant, weighted Bramble-Hilbert)
 - Uniform weighted Poincaré inequalities [Pechstein, RS, 2011+]
 - Stability and approximation of Clement-type quasi-interpolant [RS, Vassilevski, Zikatanov, 2012]
 - Abstract Bramble-Hilbert Lemma [RS, Vassilevski, Zik., 2011]

- Periodic \Rightarrow Homogenisation theory ..., [Hou, Wu, 1997],... (most!)
- Scale Separation ..., [Abdulle, 2005], ...
- Inclusions and simple interfaces [Chu, Graham, Hou, 2010] (high contrast, no periodicity, no scale separation)
- Bound in special flux norm [Berlyand, Owhadi, 2010] (high contrast, no periodicity, no scale separation)
- Low contrast ..., [Larson, Malqvist, 2007], [Owhadi, Zhang, 2011], [Grasedyck, Greff, Sauter, 2011], [Malqvist, Petersheim, 2012], [Henning, Peterseim, 2013], ... (no periodicity or scale separation)
- Weighted L²-norm (using DD theory) [RS, Zikatanov, in prep] (weighted Poincaré, stable quasi-interpolant, weighted Bramble-Hilbert)
 - Uniform weighted Poincaré inequalities [Pechstein, RS, 2011+]
 - Stability and approximation of Clement-type quasi-interpolant [RS, Vassilevski, Zikatanov, 2012]
 - Abstract Bramble-Hilbert Lemma [RS, Vassilevski, Zik., 2011]

A Variational Multiscale Method [Malqvist, Peterseim, 2012]

- (coarse) FE mesh \mathcal{T}_H with mesh width H
- associated P1-FE space $V_H := \operatorname{span} \{ \Phi_j^H \mid j = 1, \dots, N \}$
- Quasi-interpolation operator $\mathfrak{I}_H : V_h \to V_H$ [Carstensen, 1999] with $(\chi, \Phi^H)_{\text{rescal}}$

$$\mathfrak{I}_{H} \mathsf{v} := \sum_{j} \frac{(\mathsf{v}, \Phi_{j}^{H})_{L^{2}(\Omega)}}{(1, \Phi_{j}^{H})_{L^{2}(\Omega)}} \, \Phi_{j}^{H}$$

 $(\mathfrak{I}_{H} \text{ invertible on } V_{H}!)$

Decomposition

$$V_h = V_H \oplus V_h^{\mathsf{f}}$$
 with $V_h^{\mathsf{f}} := \operatorname{kernel} \mathfrak{I}_H = \{ v \in V_h \mid \mathfrak{I}_H v = 0 \}$

A Variational Multiscale Method [Malqvist, Peterseim, 2012]

- (coarse) FE mesh \mathcal{T}_H with mesh width H
- associated P1-FE space $V_H := \operatorname{span} \{ \Phi_j^H \mid j = 1, \dots, N \}$
- Quasi-interpolation operator $\mathfrak{I}_H : V_h \to V_H$ [Carstensen, 1999] with (v, Φ^H) and

$$\mathfrak{I}_H oldsymbol{v} := \sum_j rac{(oldsymbol{v}, \Phi_j^H)_{L^2(\Omega)}}{(1, \Phi_j^H)_{L^2(\Omega)}} \; \Phi_j^H$$

 $(\mathfrak{I}_{H} \text{ invertible on } V_{H}!)$

Example

Localizable Orthogonal Decomposition

• For each $v \in V_h$ define the fine scale projection $P^f v \in V_h^f$ by $a(P^f v, w) = a(v, w)$ for all $w \in V_h^f$

a-Orthogonal Decomposition

$$V_h = V_H^{
m ms} \oplus V_h^{
m f}$$
 and $a(V_H^{
m ms}, V_h^{
m f}) = 0$ with $V_H^{
m ms} := (1 - P^{
m f})V_H$

Localizable Orthogonal Decomposition

• For each $v \in V_h$ define the fine scale projection $P^f v \in V_h^f$ by $a(P^f v, w) = a(v, w)$ for all $w \in V_h^f$

a-Orthogonal Decomposition

$$V_h = V_H^{\mathsf{ms}} \oplus V_h^{\mathsf{f}}$$
 and $a(V_H^{\mathsf{ms}}, V_h^{\mathsf{f}}) = 0$ with $V_H^{\mathsf{ms}} := (1 - P^{\mathsf{f}})V_H$

Example

Modified (multiscale) nodal basis

- $\{\Phi_j^H \mid j = 1, \dots, N\} \subset V_H$ denotes classical nodal basis
- $\varphi_j^f := P^f \Phi_j^H \in V_h^f$ denotes the fine scale correction of Φ_j^H

Ideal multiscale FE space

$$V_{H}^{\rm ms} = {\rm span} \left\{ \Phi_{j}^{H} - \varphi_{j}^{f} \mid j = 1, \dots, N \right\}$$

Rob Scheichl (Bath) LMS Symposium, Durham, July 2014 Rigorous Numerical Upscaling at High Contrast 10 / 37

Exponential decay and localisation

• Define nodal patches $\omega_{j,k}$ of k-th order around vertex x_i^H of \mathcal{T}_H

Lemma

There exists a $\gamma < 1$ such that $|\varphi_j^f|_{H^1(\Omega \setminus \omega_{j,k})} \lesssim \gamma^k |\varphi_j^f|_{H^1(\Omega)}$.

Practical multiscale method: Fix k and define the localised correction φ^f_{j,k} ∈ V^f_h(ω_{j,k}) := {v ∈ V^f_h | supp v ⊂ ω_{j,k}} s.t.
 a(φ^f_{j,k}, w) = a(Φ^H_j, w) for all w ∈ V^f_h(ω_{j,k})

Localized multiscale FE spaces

$$V_{H,k}^{\mathsf{ms}} := \mathsf{span}\{\Phi_j^H - \varphi_{j,k}^f \mid j = 1, \dots, N\}$$

Exponential decay and localisation

• Define nodal patches $\omega_{j,k}$ of k-th order around vertex x_i^H of \mathcal{T}_H

Lemma

There exists a $\gamma < 1$ such that $|\varphi_j^f|_{H^1(\Omega \setminus \omega_{j,k})} \lesssim \gamma^k |\varphi_j^f|_{H^1(\Omega)}$.

Practical multiscale method: Fix k and define the localised correction φ^f_{j,k} ∈ V^f_h(ω_{j,k}) := {v ∈ V^f_h | supp v ⊂ ω_{j,k}} s.t.
 a(φ^f_{i,k}, w) = a(Φ^H_i, w) for all w ∈ V^f_h(ω_{j,k})

Localized multiscale FE spaces

$$V_{H,k}^{\mathsf{ms}} := \mathsf{span}\{\Phi_j^H - \varphi_{j,k}^f \mid j = 1, \dots, N\}$$

The Multiscale Coarse Problem

Multiscale approximation

Seek $u_{H,k}^{ms} \in V_{H,k}^{ms}$ such that

$$a(u_{H,k}^{\mathsf{ms}}, v) = (f, v) \quad ext{ for all } v \in V_{H,k}^{\mathsf{ms}}$$

- dim $V_{H,k}^{ms}$ = dim $V_H = N$ & basis functions have local support
- Overlap of the supports is proportional to the parameter k

Theorem (Malqvist & Peterseim, 2012)

 $\|u - u_{H,k}^{\mathsf{ms}}\|_{H^1(\Omega)} \lesssim k^d H^{-1} \gamma^k \|f\|_{H^{-1}(\Omega)} + H \|f\|_{L_2(\Omega)} + \|u - u_h\|_{H^1(\Omega)}$

Thus, provided $k \gtrsim \log_{\gamma}(\frac{1}{H})$ and h is suff'ly small we have **optimal** $\mathcal{O}(H)$ convergence without any assumptions on scales or regularity.

Similarly, $\mathcal{O}(H^2)$ convergence in L^2 -norm using an Aubin-Nitsche argument.

The Multiscale Coarse Problem

Multiscale approximation

Seek $u_{H,k}^{ms} \in V_{H,k}^{ms}$ such that

$$a(u_{H,k}^{\mathsf{ms}}, v) = (f, v) \quad ext{ for all } v \in V_{H,k}^{\mathsf{ms}}$$

- dim $V_{H,k}^{ms}$ = dim $V_H = N$ & basis functions have local support
- Overlap of the supports is proportional to the parameter k

Theorem (Malqvist & Peterseim, 2012)

 $|u - u_{H,k}^{\mathsf{ms}}|_{H^{1}(\Omega)} \lesssim k^{d} H^{-1} \gamma^{k} \|f\|_{H^{-1}(\Omega)} + H \|f\|_{L_{2}(\Omega)} + |u - u_{h}|_{H^{1}(\Omega)}$

Thus, provided $k \gtrsim \log_{\gamma}(\frac{1}{H})$ and *h* is suff'ly small we have **optimal** $\mathcal{O}(H)$ convergence without any assumptions on scales or regularity.

Similarly, $\mathcal{O}(H^2)$ convergence in L^2 -norm using an Aubin-Nitsche argument.

Numerical Experiment (low contrast)

Numerical Experiment (high contrast)

Numerical Experiment (high contrast)

But unfortunately $\gamma := \exp\left(\sqrt{\frac{\alpha_{\min}}{\alpha_{\max}}}\right)$ and so $\gamma \to 1$ as the contrast $\frac{\alpha_{\max}}{\alpha_{\min}} \to \infty$. The hidden constant depends also on $\frac{\alpha_{\max}}{\alpha_{\min}}$.

Theorem useless for high contrast !

₩

Theorem useless for high contrast !

Now, instead of

- working in standard H^1 and L^2 -norm
- and using the simple norm equivalence

 $\alpha_{\min}|v|_{H^1(\Omega)} \leq \|v\|_a \leq \alpha_{\max}|v|_{H^1(\Omega)}$

we want to work

- directly in the energy norm $\|v\|_{a,\omega} := (\int_{\omega} \alpha |\nabla v|^2 dx)^{1/2}$ and the weighted L^2 -norm $\|v\|_{0,\alpha,\omega} := (\int_{\omega} \alpha v^2 dx)^{1/2}$
- and use a coefficient-weighted quasi-interpolant
- as well as a weighted Poincaré type inequality and a weighted inverse type inequality

Main Result (Peterseim & RS, 2013+)

If there exists a linear, continuous quasi-interpolation operator $\Im_H : V_h \rightarrow V_H$ and two generic constants C_2 and C_3 such that

$$\begin{array}{ll} (\mathbb{Q}|1) & (\mathfrak{I}_{H}|_{V_{H}})^{-1}\mathfrak{I}_{H}v_{H} = v_{H}, \text{ for all } v_{H} \in V_{H} \\ (\mathbb{Q}|2) & H_{T}^{-2}\|v - \mathfrak{I}_{H}v\|_{0,\alpha,T}^{2} + \|v - \mathfrak{I}_{H}v\|_{a,T}^{2} \leq C_{2}\|v\|_{a,\omega_{T}}^{2}, \\ \text{ for all } v \in V_{h} \text{ and } T \in \mathcal{T}_{H} \end{array}$$

(QI3) for all $v_H \in V_H$ there exists a $v \in V_h$, s.t. $\mathfrak{I}_H v = v_H$, supp $v \subset$ supp v_H and $||v||_a \leq C_3 ||v_H||_a$.

then (with some universal constant $m \lesssim 1$)

$$\|u-u_{H,k}^{\mathsf{ms}}\|_{\mathfrak{s}} \lesssim \left(\frac{\alpha_{\mathsf{max}}}{\alpha_{\mathsf{min}}}\right)^{m} \frac{\mathrm{e}^{-k}}{H} \|f\|_{H^{-1}(\Omega)} + \frac{H}{\alpha_{\mathsf{min}}^{-1/2}} \|f\|_{L_{2}(\Omega)} + \|u-u_{h}\|_{\mathfrak{s}}$$

Thus, provided $k \gtrsim \ln(\frac{\alpha_{\max}}{\alpha_{\min}}\frac{1}{H})$ and *h* suff'ly small we have **optimal** $\mathcal{O}(H)$ convergence without assumptions on regularity or contrast.

Again, $\mathcal{O}(H^2)$ convergence in L^2 -norm follows by an Aubin-Nitsche argument.

• Now adapt theory developed for 2-level Schwarz to prove (QI2)

- For simplicity assume α p.w. constant w.r.t. some grid \mathcal{T}_{η} , with $h < \eta < H$, but not by \mathcal{T}_{H} $(\mathcal{T}_{H} \subset \mathcal{T}_{\eta} \subset \mathcal{T}_{H}$ nested
- For every $T \in T_H$ define $\omega_T := \bigcup \{T' : T \cap T' \neq \emptyset\}$.

_emma (Old) [RS, Vassilevski, Zikatanov, SINUM 2012]

For all $T \in \mathcal{T}_H$, let $C_K^P > 0$ be the best constant s.t. for all $v \in V_h$ the following **weighted Poincaré inequality** holds:

 $\inf_{\xi \in \mathbb{R}} \| v - \xi \|_{0,\alpha,\omega_{T}}^{2} \leq C_{T}^{P} \operatorname{diam}(\omega_{T})^{2} \| \nabla v \|_{a,\omega_{T}}^{2}$ (WPI)

(with a slight variation near Dirichlet boundaries). Then

$$|H_{T}^{-2}||v - \Im_{H}v||_{0,\alpha,T}^{2} + ||v - \Im_{H}v||_{a,T}^{2} \lesssim C_{2} ||v||_{a,\omega_{T}}^{2}$$
(QI2)

- Now adapt theory developed for 2-level Schwarz to prove (QI2)
- For simplicity assume α p.w. constant w.r.t. some grid \mathcal{T}_{η} , with $h < \eta < H$, but not by \mathcal{T}_{H} $(\mathcal{T}_{H} \subset \mathcal{T}_{\eta} \subset \mathcal{T}_{H} \text{ nested})$
- For every $T \in \mathcal{T}_H$ define $\omega_T := \bigcup \{ T' : T \cap T' \neq \emptyset \}.$

emma (Old) [RS, Vassilevski, Zikatanov, SINUM 2012].

For all $T \in \mathcal{T}_H$, let $C_K^P > 0$ be the best constant s.t. for all $v \in V_h$ the following **weighted Poincaré inequality** holds:

$$\begin{split} \inf_{\xi \in \mathbb{R}} \| v - \xi \|_{0,\alpha,\omega_{T}}^{2} &\leq C_{T}^{P} \operatorname{diam}(\omega_{T})^{2} \| \nabla v \|_{a,\omega_{T}}^{2} \quad (WPI) \\ (\text{with a slight variation near Dirichlet boundaries}). Then \\ H_{T}^{-2} \| v - \mathfrak{I}_{H} v \|_{0,\alpha,T}^{2} + \| v - \mathfrak{I}_{H} v \|_{a,T}^{2} \lesssim C_{2} \| v \|_{a,\omega_{T}}^{2} \quad (Ql2) \\ \text{with } \mathfrak{I}_{H} v = \sum_{j} \frac{\int_{\operatorname{supp}(\Phi_{j}^{H})} \alpha v \, dx}{\int_{\operatorname{supp}(\Phi_{j}^{H})} \alpha \, dx} \Phi_{j}^{H} \text{ and } C_{2} = \max_{T \in \mathcal{T}_{H}} C_{T}^{P}. \end{split}$$

- Now adapt theory developed for 2-level Schwarz to prove (QI2)
- For simplicity assume α p.w. constant w.r.t. some grid \mathcal{T}_{η} , with $h < \eta < H$, but not by \mathcal{T}_{H} $(\mathcal{T}_{H} \subset \mathcal{T}_{\eta} \subset \mathcal{T}_{H} \text{ nested})$
- For every $T \in \mathcal{T}_H$ define $\omega_T := \bigcup \{T' : T \cap T' \neq \emptyset\}.$

Lemma (Old) [RS, Vassilevski, Zikatanov, SINUM 2012]

For all $T \in T_H$, let $C_K^P > 0$ be the best constant s.t. for all $v \in V_h$ the following weighted Poincaré inequality holds:

$$\begin{aligned} \inf_{\xi \in \mathbb{R}} \| v - \xi \|_{0,\alpha,\omega_T}^2 &\leq C_T^P \operatorname{diam}(\omega_T)^2 \| \nabla v \|_{a,\omega_T}^2 \quad (WPI) \\ \text{(with a slight variation near Dirichlet boundaries). Then} \\ H_T^{-2} \| v - \mathfrak{I}_H v \|_{0,\alpha,T}^2 + \| v - \mathfrak{I}_H v \|_{a,T}^2 \lesssim C_2 \| v \|_{a,\omega_T}^2 \quad (QI2) \\ \text{with} \quad \mathfrak{I}_H v = \sum_j \frac{\int_{\text{supp}(\Phi_j^H)} \alpha v \, dx}{\int_{\text{supp}(\Phi_j^H)} \alpha \, dx} \Phi_j^H \quad \text{and} \quad C_2 = \max_{T \in \mathcal{T}_H} C_T^P. \end{aligned}$$

- Now adapt theory developed for 2-level Schwarz to prove (QI2)
- For simplicity assume α p.w. constant w.r.t. some grid \mathcal{T}_{η} , with $h < \eta < H$, but not by \mathcal{T}_{H} $(\mathcal{T}_{H} \subset \mathcal{T}_{\eta} \subset \mathcal{T}_{H} \text{ nested})$
- For every $T \in \mathcal{T}_H$ define $\omega_T := \bigcup \{ T' : T \cap T' \neq \emptyset \}.$

Lemma (New) Proof analogous! [Peterseim, RS, 2013+])

 $(\alpha, \Psi_i^{r})_{L^2(\Omega)}$

i=1

W

For all $T \in \mathcal{T}_H$, let $C_K^P > 0$ be the best constant s.t. for all $v \in V_h$ the following weighted Poincaré inequality holds:

$$\inf_{\xi \in \mathbb{R}} \| v - \xi \|_{0,\alpha,\omega_T}^2 \leq C_T^P \operatorname{diam}(\omega_T)^2 \| \nabla v \|_{a,\omega_T}^2 \quad (WPI)$$

with a slight variation near Dirichlet boundaries). Then
$$H_T^{-2} \| v - \mathfrak{I}_H v \|_{0,\alpha,T}^2 + \| v - \mathfrak{I}_H v \|_{a,T}^2 \lesssim C_2 \| v \|_{a,\omega_T}^2 \quad (QI2)$$

with
$$\mathfrak{I}_H v := \sum_{i=1}^N \frac{(\alpha v, \Phi_j^H)_{L^2(\Omega)}}{(\alpha + H)} \Phi_i^H \text{ and } C_2 \approx \frac{H}{n} \max_{T \in \mathcal{T}_H} C_T^P$$

(price to pay to also get (QI3))
Approximation result in the weighted L^2 -norm (p.w. linears)

Corollary [RS, Zikatanov, in prep]

Assume that the PDE solution $u \in H^{1+s}(\Omega)$, for some s > 0. Then

(under the same assumptions as above)

$$\inf_{\nu_{H}\in V_{H}} \|u-v_{H}\|_{0,\alpha} \lesssim C_{*}H \|f\|_{H^{-1}(\Omega)}.$$

- Possibly not sharp (w.r.t. H), but needs minimal regularity
- Sharp w.r.t. coefficient variation. We can show lower bound:
 i.e. C_{*} ≫ H⁻¹ ⇒ no approximation!
- Constant C_{*} can be independent of α (local quasi-monotonicity; see below)
- Extends readily to other "nodal" spaces, such as MsFEs

Approximation result in the weighted L^2 -norm (p.w. linears)

Corollary [RS, Zikatanov, in prep]

Assume that the PDE solution $u \in H^{1+s}(\Omega)$, for some s > 0. Then

(under the same assumptions as above)

$$\inf_{v_{H}\in V_{H}} \|u-v_{H}\|_{0,\alpha} \lesssim C_{*}H \|f\|_{H^{-1}(\Omega)}.$$

- Possibly not sharp (w.r.t. H), but needs minimal regularity
- Sharp w.r.t. coefficient variation. We can show lower bound: i.e. $C_* \gg H^{-1} \Rightarrow$ no approximation!
- Constant C_{*} can be independent of α (local quasi-monotonicity; see below)
- Extends readily to other "nodal" spaces, such as MsFEs

When is Poincaré constant independent of contrast in α ?

- Careful theory in [Pechstein, RS, IMAJNA 2012] linking robustness to **quasi-monotonicity**!
- Bounds for the <u>effective Poincaré constant</u> C_T^P in 3D :

Darker colour means higher permeability.

Poincaré's inequality

Domain $\Omega \subset \mathbb{R}^d$ (open, bounded, connected set). $\exists C > 0$ s.t. $\inf_{\gamma \in \mathbb{R}} \|u - \gamma\|_{L^2(\Omega)}^2 \leq C \operatorname{diam}(\Omega)^2 |u|_{H^1(\Omega)}^2 \quad \forall u \in H^1(\Omega).$

- C depends only on shape of Ω , **not** on diam (Ω)
- Infimum attained at

$$\gamma^* = \overline{u}^{\Omega} := \frac{1}{|\Omega|} \int_{\Omega} u \, dx$$

• Inequality (with different constant C) also works for

$$\gamma = \overline{u}^X := \frac{1}{|X|} \int_X u \, dx$$

where $X \subset \Omega$ subset or (d - 1)-dimensional manifold (with positive volume/surface measure)

Weighted Poincaré type inequality

For $\boldsymbol{\alpha} \in L^{\infty}(\Omega)$ uniformly positive, we define

$$\|v\|_{L^2(\Omega),\boldsymbol{\alpha}}^2 := \int_{\Omega} \boldsymbol{\alpha} \, |v|^2 dx \quad \text{and} \quad |v|_{H^1(\Omega),\boldsymbol{\alpha}}^2 := \int_{\Omega} \boldsymbol{\alpha} \, |\nabla v|^2 dx$$

Clearly,

$$\|u - \overline{u}^{\Omega}\|_{L^2(\Omega), \boldsymbol{\alpha}}^2 \leq C \max_{x, y \in \Omega} \frac{\boldsymbol{\alpha}(x)}{\boldsymbol{\alpha}(y)} \operatorname{diam} (\Omega)^2 |u|_{H^1(\Omega), \boldsymbol{\alpha}}^2$$

Question

Can we find C^P independent of variation & contrast in α such that

$$\inf_{\gamma \in \mathbb{R}} \|u - \gamma\|_{L^2(\Omega), \alpha}^2 \leq C^P \|u|_{H^1(\Omega), \alpha}^2$$

for some class of weights $\boldsymbol{lpha}:\Omega o \mathbb{R}^+$?

Weighted Poincaré type inequality

For $\boldsymbol{\alpha} \in L^{\infty}(\Omega)$ uniformly positive, we define

$$\|v\|_{L^2(\Omega),\boldsymbol{\alpha}}^2 := \int_{\Omega} \boldsymbol{\alpha} \, |v|^2 dx \quad \text{and} \quad |v|_{H^1(\Omega),\boldsymbol{\alpha}}^2 := \int_{\Omega} \boldsymbol{\alpha} \, |\nabla v|^2 dx$$

Clearly,

$$\|u-\overline{u}^{\Omega}\|^2_{L^2(\Omega),\boldsymbol{\alpha}} \leq C \max_{x,y\in\Omega} \frac{\boldsymbol{\alpha}(x)}{\boldsymbol{\alpha}(y)} \operatorname{diam}\left(\Omega\right)^2 |u|^2_{H^1(\Omega),\boldsymbol{\alpha}}$$

Question

Can we find C^P independent of variation & contrast in α such that

$$\inf_{\gamma \in \mathbb{R}} \|u - \gamma\|_{L^2(\Omega), \alpha}^2 \leq C^P \|u\|_{H^1(\Omega), \alpha}^2$$

for some class of weights $\alpha : \Omega \to \mathbb{R}^+$?

Model Case #1

Assume $\overline{\Omega} = \overline{\Omega}_1 \cup \overline{\Omega}_2$ (Ω_k "well-shaped") with **interface** $\Gamma_{12} := \partial \Omega_1 \cap \partial \Omega_2$

and $\alpha_{|\Omega_k} = \alpha_k = \text{const}$

Apply standard Poincaré type inequality on Ω_1 and Ω_2 , i.e.

 $\|u - \overline{u}^{\Gamma_{12}}\|_{L^2(\Omega_k)}^2 \leq C \operatorname{diam} (\Omega_k)^2 |u|_{H^1(\Omega_k)}^2 \qquad \forall \, u \in H^1(\Omega_k)$

Then multiplying by α_k and adding implies

 $\|u - \overline{u}^{\Gamma_{12}}\|_{L^2(\Omega), \boldsymbol{\alpha}}^2 \leq C \operatorname{diam}(\Omega)^2 |u|_{H^1(\Omega), \boldsymbol{\alpha}}^2$

with C depending on (the shape of) Ω_k and Γ_{12} but **not** on α !

Assume $\overline{\Omega} = \overline{\Omega}_1 \cup \overline{\Omega}_2$ (Ω_k "well-shaped") with **interface** $\Gamma_{12} := \partial \Omega_1 \cap \partial \Omega_2$

and $\alpha_{|\Omega_k} = \alpha_k = \text{const}$

Apply standard Poincaré type inequality on Ω_1 and Ω_2 , i.e.

 $\|u - \overline{u}^{\Gamma_{12}}\|_{L^2(\Omega_k)}^2 \leq C \operatorname{diam}(\Omega_k)^2 |u|_{H^1(\Omega_k)}^2 \qquad \forall u \in H^1(\Omega_k)$

Then multiplying by α_k and adding implies

$$\|u - \overline{u}^{\Gamma_{12}}\|_{L^2(\Omega),\boldsymbol{\alpha}}^2 \leq C \operatorname{diam}(\Omega)^2 |u|_{H^1(\Omega),\boldsymbol{\alpha}}^2$$

with C depending on (the shape of) Ω_k and Γ_{12} but **not** on α !

Assume $\overline{\Omega} = \overline{\Omega}_1 \cup \overline{\Omega}_2 \cup \overline{\Omega}_3$ (Ω_k "well-shaped") s.t. $\boldsymbol{\alpha}_{|\Omega_k} = \alpha_k = \text{const}$ and $\alpha_3 \ge \alpha_2 \ge \alpha_1$

Define manifold $X^* := \partial \Omega_1 \cap \partial \Omega_3$

 $\begin{aligned} \|u - \overline{u}^{X^*}\|_{L^2(\Omega_2), \alpha}^2 &= \alpha_2 \|u - \overline{u}^{X^*}\|_{L^2(\Omega_2 \cup \Omega_3)}^2 \\ &\leq \alpha_2 C \operatorname{diam}(\Omega)^2 |u|_{H^1(\Omega_2 \cup \Omega_3)}^2 \\ &\leq C \operatorname{diam}(\Omega)^2 \left\{ \int_{\Omega_2} \alpha_2 |\nabla u| dx + \int_{\Omega_3} \underbrace{\alpha_2}_{\leq \alpha_3} |\nabla u| dx \right\} \\ &\leq C \operatorname{diam}(\Omega)^2 |u|_{H^1(\Omega_2 \cup \Omega_3), \alpha}^2 \end{aligned}$

Again C depends on (the shape of) Ω_k and X^* , but **not** on α !

Assume $\overline{\Omega} = \overline{\Omega}_1 \cup \overline{\Omega}_2 \cup \overline{\Omega}_3$ (Ω_k "well-shaped") s.t. $\alpha_{|\Omega_k} = \alpha_k = \text{const}$ and $\alpha_3 \ge \alpha_2 \ge \alpha_1$

Define manifold $X^* := \partial \Omega_1 \cap \partial \Omega_3$

Treat Ω_1 and Ω_3 as before, and

 $\begin{aligned} \|u - \overline{u}^{X^*}\|_{L^2(\Omega_2), \boldsymbol{\alpha}}^2 &= \alpha_2 \|u - \overline{u}^{X^*}\|_{L^2(\Omega_2 \cup \Omega_3)}^2 \\ &\leq \alpha_2 C \operatorname{diam}(\Omega)^2 |u|_{H^1(\Omega_2 \cup \Omega_3)}^2 \\ &\leq C \operatorname{diam}(\Omega)^2 \left\{ \int_{\Omega_2} \alpha_2 |\nabla u| dx + \int_{\Omega_3} \underbrace{\alpha_2}_{\leq \alpha_3} |\nabla u| dx \right\} \\ &\leq C \operatorname{diam}(\Omega)^2 |u|_{H^1(\Omega_2 \cup \Omega_3), \boldsymbol{\alpha}}^2 \end{aligned}$

Again C depends on (the shape of) Ω_k and X^{*}, but **not** on α !

Assume $\overline{\Omega} = \overline{\Omega}_1 \cup \overline{\Omega}_2 \cup \overline{\Omega}_3$ (Ω_k "well-shaped") s.t. $\alpha_{|\Omega_k} = \alpha_k = \text{const}$ and $\alpha_3 \ge \alpha_2 \ge \alpha_1$

Define manifold $X^* := \partial \Omega_1 \cap \partial \Omega_3$

However, if α_1 , $\alpha_2 \gg \alpha_3$ then such an inequality **cannot** exist:

Counter example: $\alpha_1 = \alpha_2 = 1 \text{ and } \alpha_3 = \varepsilon \ll 1$ $\|u\|_{L^2(\Omega), \alpha}^2 \sim 1$ $|u|_{H^1(\Omega), \alpha}^2 \sim \varepsilon$

Model Case #3

Assume $\overline{\Omega} = \overline{\Omega}_1 \cup \cdots \cup \overline{\Omega}_4$ (Ω_k "well-shaped") s.t. $\boldsymbol{\alpha}_{|\Omega_k} = \boldsymbol{\alpha}_k = \text{const}$ (arbitrary!)

Define **"manifold"** $X^* := \bigcup_{k=1}^4 \partial \Omega_k$ (non-empty!)

Here we can use <u>discrete</u> Poincaré (or Sobolev) inequalities:

Let V^h be p.w. linear FEs (quasi-uniform \mathcal{T}^h) and Ω_k union of a few (coarse) simplices (quasi-uniform of size $\mathcal{O}(\eta)$). Then (in 2D):

 $\|u-\overline{u}^{X^*}\|^2_{L^2(\Omega_k)} ~\leq~ \mathcal{C}\left(1+\log\left(rac{\eta}{h}
ight)
ight)\eta^2 |u|^2_{H^1(\Omega_k)} \quad orall u \in V^h(\Omega_k)$

where $\eta := \max_k \operatorname{diam}(\Omega_k)$ and $\overline{u}^{X^*} := u(X^*)$.

Adding up \rightsquigarrow robust weighted <u>discrete</u> Poincaré type inequality

Model Case #3

Assume $\overline{\Omega} = \overline{\Omega}_1 \cup \cdots \cup \overline{\Omega}_4$ (Ω_k "well-shaped") s.t. $\boldsymbol{\alpha}_{|\Omega_k} = \boldsymbol{\alpha}_k = \text{const}$ (arbitrary!)

Define **"manifold"** $X^* := \bigcup_{k=1}^4 \partial \Omega_k$ (non-empty!)

Here we can use discrete Poincaré (or Sobolev) inequalities:

Let V^h be p.w. linear FEs (quasi-uniform \mathcal{T}^h) and Ω_k union of a few (coarse) simplices (quasi-uniform of size $\mathcal{O}(\eta)$). Then (in 2D):

 $\|u-\overline{u}^{X^*}\|^2_{L^2(\Omega_k)} \leq C\left(1+\log\left(rac{\eta}{h}
ight)
ight)\eta^2 |u|^2_{H^1(\Omega_k)} \quad orall u \in V^h(\Omega_k)$

where $\eta := \max_k \operatorname{diam}(\Omega_k)$ and $\overline{u}^{X^*} := u(X^*)$.

Adding up \rightsquigarrow robust weighted <u>discrete</u> Poincaré type inequality

Theorem (Weighted Poincaré Ineq.) [Pechstein, RS, IMAJNA'12]

Let $x_{\max} \in \overline{\omega}$ be the point where k(x) attains its maximum on $\overline{\omega}$. If there exists a path P from every point $x \in \omega$ to x_{\max} such that k never decreases along P (quasi-monotonicity), then there exists a constant $C^P > 0$ independent of h, k(x) and diam(ω) such that

$$\inf_{\gamma \in \mathbb{R}} \int_{\omega} \alpha(x) (v - \gamma)^2 \leq C^P \operatorname{diam}(\omega)^2 \int_{\omega} \alpha(x) |\nabla v|^2 \quad \forall v \in V_h.$$

• More details in [Pechstein, RS, IMAJNA 2012].

Theorem (Weighted Poincaré Ineq.) [Pechstein, RS, IMAJNA'12]

Let $x_{\max} \in \overline{\omega}$ be the point where k(x) attains its maximum on $\overline{\omega}$. If there exists a path P from every point $x \in \omega$ to x_{\max} such that k never decreases along P (quasi-monotonicity), then there exists a constant $C^P > 0$ independent of h, k(x) and diam(ω) such that

$$\inf_{\gamma \in \mathbb{R}} \int_{\omega} \alpha(x) (v - \gamma)^2 \leq C^P \operatorname{diam}(\omega)^2 \int_{\omega} \alpha(x) |\nabla v|^2 \quad \forall v \in V_h.$$

• More details in [Pechstein, RS, IMAJNA 2012].

RECALL: Main Theorem (Peterseim & RS, 2013+)

If there exists a linear, continuous quasi-interpolation operator $\Im_H : V_h \rightarrow V_H$ and two generic constants C_2 and C_3 such that

$$\begin{array}{ll} (\mathbb{Q}|1) & (\mathfrak{I}_{H}|_{V_{H}})^{-1}\mathfrak{I}_{H}v_{H} = v_{H}, & \text{for all } v_{H} \in V_{H} \\ (\mathbb{Q}|2) & H_{T}^{-2}\|v - \mathfrak{I}_{H}v\|_{0,\alpha,T}^{2} + \|v - \mathfrak{I}_{H}v\|_{a,T}^{2} \leq C_{2}\|v\|_{a,\omega_{T}}^{2} \\ & \text{for all } v \in V_{h} \text{ and } T \in \mathcal{T}_{H} \end{array}$$

(QI3) for all $v_H \in V_H$ there exists a $v \in V_h$, s.t. $\mathfrak{I}_H v = v_H$, supp $v \subset$ supp v_H and $||v||_a \leq C_3 ||v_H||_a$.

then (with some universal constant $m \lesssim 1$)

$$\|u-u_{H,k}^{\mathsf{ms}}\|_{\mathfrak{s}} \lesssim \left(\frac{\alpha_{\mathsf{max}}}{\alpha_{\mathsf{min}}}\right)^{m} \frac{e^{-k}}{H} \|f\|_{H^{-1}(\Omega)} + \frac{H}{\alpha_{\mathsf{min}}^{-1/2}} \|f\|_{L_{2}(\Omega)} + \|u-u_{h}\|_{\mathfrak{s}}$$

Thus, provided $k \gtrsim \ln(\frac{\alpha_{\max}}{\alpha_{\min}}\frac{1}{H})$ and *h* suff'ly small we have **optimal** $\mathcal{O}(H)$ convergence without assumptions on regularity or contrast.

Again, $\mathcal{O}(H^2)$ convergence in L^2 -norm follows by an Aubin-Nitsche argument.

Assumptions (QI1) and (QI3)

- (Q11): Let $v_H := \sum_j \gamma_j \Phi_j^H \in V_H$. Then $\mathfrak{I}_H v_H = \sum_j (\tilde{M}\gamma)_j \Phi_j^H$ where \tilde{M} is a scaled mass matrix on V_H which is invertible.
- (QI3) is more difficult, but under the above assumptions on the coefficient (i.e. p.w. const. w.r.t. T_{η}), it can be shown similar to Lemma 1 in [Malqvist, Peterseim '12] with $C_3 \approx \left(\frac{H}{\eta}\right)^2$.

In summary, we do get **optimal, contrast independent** convergence rates, but so far only under **fairly stringent** assumptions on the type of coefficient variation .e. locally quasi-monotone & p.w. constant w.r.t. T_{η} for moderate H/η)

Assumptions (QI1) and (QI3)

- (Q11): Let $v_H := \sum_j \gamma_j \Phi_j^H \in V_H$. Then $\mathfrak{I}_H v_H = \sum_j (\tilde{M}\gamma)_j \Phi_j^H$ where \tilde{M} is a scaled mass matrix on V_H which is invertible.
- (QI3) is more difficult, but under the above assumptions on the coefficient (i.e. p.w. const. w.r.t. T_{η}), it can be shown similar to Lemma 1 in [Malqvist, Peterseim '12] with $C_3 \approx \left(\frac{H}{\eta}\right)^2$.

In summary, we do get **optimal, contrast independent** convergence rates, but so far only under **fairly stringent** assumptions on the type of coefficient variation .e. locally quasi-monotone & p.w. constant w.r.t. T_{η} for moderate H/η)

Assumptions (QI1) and (QI3)

- (QI1): Let $v_H := \sum_j \gamma_j \Phi_j^H \in V_H$. Then $\mathfrak{I}_H v_H = \sum_j (\tilde{M}\gamma)_j \Phi_j^H$ where \tilde{M} is a scaled mass matrix on V_H which is invertible.
- (QI3) is more difficult, but under the above assumptions on the coefficient (i.e. p.w. const. w.r.t. T_{η}), it can be shown similar to Lemma 1 in [Malqvist, Peterseim '12] with $C_3 \approx \left(\frac{H}{\eta}\right)^2$.

In summary, we do get **optimal**, **contrast independent** convergence rates, but so far only under **fairly stringent** assumptions on the type of coefficient variation (i.e. locally quasi-monotone & p.w. constant w.r.t. T_{η} for moderate H/η)

Numerical Experiment I

Numerical Experiment II

Ideas for non-quasi-monotone coefficients

For high permeability inclusions should be able to use MsFEM instead of V_H as initial coarse space. Analysis based on **"XZ-identity"** [Xu, Zikatanov, 2002] and [Graham, Lechner, RS '07].

But in general when α is **not quasi-monotone** on all ω_K \longrightarrow **need to adapt grid/supports or "enrich" the space !**

Ideas for non-quasi-monotone coefficients

For high permeability inclusions should be able to use MsFEM instead of V_H as initial coarse space. Analysis based on "**XZ-identity**" [Xu, Zikatanov, 2002] and [Graham, Lechner, RS '07].

But in general when α is **not quasi-monotone** on all ω_K \longrightarrow **need to adapt grid/supports or "enrich" the space !**

Ideas for non-quasi-monotone coefficients

For high permeability inclusions should be able to use MsFEM instead of V_H as initial coarse space. Analysis based on "**XZ-identity**" [Xu, Zikatanov, 2002] and [Graham, Lechner, RS '07].

But in general when α is **not quasi-monotone** on all ω_K

ightarrow need to adapt grid/supports or "enrich" the space !

Local energy minimising coarse spaces (incl. GMsFEM)

• Suppose $\{\Omega_{\ell}\}_{\ell=1}^{L}$ is overlapping partition of Ω .

Local Energy Minimization subject to Functional Constraints For each subdomain Ω_{ℓ} , assume that we have a collection of **linear** functionals $\{f_{\ell,i}\}_{i=1}^{m_{\ell}} \subset V_h(\Omega_{\ell})'$ and let

 $\Psi_{\ell,j} = \argmin_{v \in V_h(\Omega_\ell)} \|v\|_{a,\Omega_\ell}^2 \quad \text{subject to} \quad f_{\ell,k}(\Psi_{\ell,j}) = \delta_{jk} \,.$

Now define global coarse space

 $V_{H} = \operatorname{span} \left\{ \Phi_{\ell,j} := I_{h} \left(\chi_{\ell} \Psi_{\ell,j} \right) : \ell = \overline{1, L}, \ j = \overline{1, m_{\ell}} \right\}$

i.e. glue together local energy minimising bases via partition of unity $\{\chi_\ell\}$

Local energy minimising coarse spaces (incl. GMsFEM)

• Suppose $\{\Omega_{\ell}\}_{\ell=1}^{L}$ is overlapping partition of Ω .

Local Energy Minimization subject to Functional Constraints For each subdomain Ω_{ℓ} , assume that we have a collection of **linear** functionals $\{f_{\ell,i}\}_{i=1}^{m_{\ell}} \subset V_h(\Omega_{\ell})'$ and let

 $\Psi_{\ell,j} = \argmin_{v \in V_h(\Omega_\ell)} \|v\|_{a,\Omega_\ell}^2 \quad \text{subject to} \quad f_{\ell,k}(\Psi_{\ell,j}) = \delta_{jk} \,.$

• Now define global coarse space

 $V_{H} = \operatorname{span} \left\{ \Phi_{\ell,j} := I_{h} \left(\chi_{\ell} \Psi_{\ell,j} \right) : \ell = \overline{1, L}, \ j = \overline{1, m_{\ell}} \right\}$

i.e. glue together local energy minimising bases via partition of unity $\{\chi_\ell\}$

Theorem [RS, Vassilevski, Zikatanov, MMS 2011]

Let $v \in V_h$. Then

 $H_T^{-2} \| v - \mathfrak{I}_H v \|_{0,\alpha,T}^2 + \| v - \mathfrak{I}_H v \|_{a,T}^2 \lesssim \| v \|_{a,\omega_T}^2$

where $\Im_H v = \sum_{\ell=1}^{L} \sum_{j=1}^{m_{\ell}} f_{\ell,j}(v) \Phi_{\ell,j}^H$ is the **quasi-interpolant**.

- Proof follows from a (new) abstract approximation result related to the **Bramble-Hilbert Lemma** applied locally on each Ω_{ℓ} to the **local quasi-interpolant** $\Pi_{\ell} v = \sum_{i} f_{\ell,i}(v) \Psi_{\ell,i}$.
- An example of a functional is f_{ℓj}(v) = ∫_{Ωj} αΨ_{ℓj}v dx which leads to local eigensolves (GMsFEM) [Efendiev et al '10]
- [12] But also other functionals possible [RS, Vassilevski, Zikatanov

Theorem [RS, Vassilevski, Zikatanov, MMS 2011] Let $v \in V_h$. Then $H_T^{-2} \| v - \Im_H v \|_{0,\alpha,T}^2 + \| v - \Im_H v \|_{a,T}^2 \lesssim \| v \|_{a,\omega_T}^2$ where $\Im_H v = \sum_{\ell=1}^L \sum_{j=1}^{m_\ell} f_{\ell,j}(v) \Phi_{\ell,j}^H$ is the **quasi-interpolant**.

- Proof follows from a (new) abstract approximation result related to the Bramble-Hilbert Lemma applied locally on each Ω_{ℓ} to the local quasi-interpolant $\Pi_{\ell} v = \sum_{i} f_{\ell,i}(v) \Psi_{\ell,i}$.
- An example of a functional is $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \Psi_{\ell,j} v \, dx$ which leads to local eigensolves (**GMsFEM**) [Efendiev et al '10]
- But also other functionals possible [RS, Vassilevski, Zikatanov '12]

Theorem [RS, Vassilevski, Zikatanov, MMS 2011] Let $v \in V_h$. Then $H_T^{-2} \| v - \Im_H v \|_{0,\alpha,T}^2 + \| v - \Im_H v \|_{a,T}^2 \lesssim \| v \|_{a,\omega_T}^2$ where $\Im_H v = \sum_{\ell=1}^L \sum_{j=1}^{m_\ell} f_{\ell,j}(v) \Phi_{\ell,j}^H$ is the **quasi-interpolant**.

- Proof follows from a (new) abstract approximation result related to the Bramble-Hilbert Lemma applied locally on each Ω_{ℓ} to the local quasi-interpolant $\prod_{\ell} v = \sum_{i} f_{\ell,i}(v) \Psi_{\ell,i}$.
- An example of a functional is $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \Psi_{\ell,j} v \, dx$ which leads to local eigensolves (**GMsFEM**) [Efendiev et al '10]

• But also other functionals possible [RS, Vassilevski, Zikatanov '12]

Theorem [RS, Vassilevski, Zikatanov, MMS 2011] Let $v \in V_h$. Then $H_T^{-2} \| v - \Im_H v \|_{0,\alpha,T}^2 + \| v - \Im_H v \|_{a,T}^2 \lesssim \| v \|_{a,\omega_T}^2$ where $\Im_H v = \sum_{\ell=1}^L \sum_{j=1}^{m_\ell} f_{\ell,j}(v) \Phi_{\ell,j}^H$ is the **quasi-interpolant**.

- Proof follows from a (new) abstract approximation result related to the Bramble-Hilbert Lemma applied locally on each Ω_ℓ to the local quasi-interpolant Π_ℓv = ∑_i f_{ℓ,j}(v)Ψ_{ℓ,j}.
- An example of a functional is $f_{\ell,j}(v) = \int_{\Omega_{\ell}} \alpha \Psi_{\ell,j} v \, dx$ which leads to local eigensolves (**GMsFEM**) [Efendiev et al '10]
- But also other functionals possible [RS, Vassilevski, Zikatanov '12]

Suppose $V \subset \mathcal{H}$ with **Hilbert** space $(\mathcal{H}, \|\cdot\|)$, $a(\cdot, \cdot)$ an abstract symmetric continuous bilinear form on $V \times V$ and $\{f_k\}_{k=1}^m \subset V'$.

Define for all $v \in V$

 $\psi_k = \arg\min_{v \in V} |v|_a^2$, subject to $f_j(\psi_k) = \delta_{jk}$ $j, k = 1, \dots, m$.

Make the following assumptions:

A1. *a* is positive semi-definite and s.t. $|\cdot|_a$ and $\sqrt{||v||^2 + |v|_a^2}$ define a semi-norm and a norm on *V*, respectively.

A2. For all $\mathbf{q} \in \mathbb{R}^m$ there exists a $v_{\mathbf{q}} \in V$ with

 $f_k(\mathbf{v_q}) = q_k$, and $\|\mathbf{v_q}\| \lesssim c_q \|\mathbf{q}\|_{l^2(\mathbb{R}^m)}$.

A3. $\|v\|^2 \le c_a |v|_a^2 + c_f \sum_{k=1}^m |f_k(v)|^2$, for all $v \in V$.

Suppose $V \subset \mathcal{H}$ with **Hilbert** space $(\mathcal{H}, \|\cdot\|)$, $a(\cdot, \cdot)$ an abstract symmetric continuous bilinear form on $V \times V$ and $\{f_k\}_{k=1}^m \subset V'$.

Define for all $v \in V$

 $\psi_k = \arg\min_{v \in V} |v|_a^2$, subject to $f_j(\psi_k) = \delta_{jk}$ $j, k = 1, \dots, m$.

Make the following assumptions:

A1. *a* is positive semi-definite and s.t. $|\cdot|_a$ and $\sqrt{||v||^2 + |v|_a^2}$ define a semi-norm and a norm on *V*, respectively.

A2. For all $\mathbf{q} \in \mathbb{R}^m$ there exists a $v_{\mathbf{q}} \in V$ with

 $f_k(v_{\mathbf{q}}) = q_k$, and $\|v_{\mathbf{q}}\| \lesssim c_q \|\mathbf{q}\|_{l^2(\mathbb{R}^m)}$.

A3. $\|v\|^2 \le c_a |v|_a^2 + c_f \sum_{k=1}^m |f_k(v)|^2$, for all $v \in V$.

Theorem (RS, Vassilevski, Zikatanov, MMS 2011)

Let Assumptions A1-3 hold. Then $\pi u = \sum_k f_k(u)\psi_k$ satisfies

 $\|\pi u\|_a \le \|u\|_a$ and $\|u - \pi u\| \le \sqrt{c_a} \|u\|_a$ for all $u \in V$.

(Note that this is independent of the constants c_q and c_f in A2 and A3.)

Proof.

- Given u ∈ V, πu minimizes energy subject to f_k(v) = f_k(u). Thus it is a projection and |πu|_a ≤ |u|_a.
- It follows from A3 and the fact that $f_k(v \pi v) = 0$ that

$$\begin{aligned} \|v - \pi v\|^2 &\leq ||c_s||v - \pi v|_s^2 + \alpha \sum_{l=1}^{\infty} |f(v - \pi v)|^2 &= ||c_s||v - \pi v|_s^2 \\ &\leq ||c_s|| - \pi ||s_s||v|_s^2 \leq ||c_s||\pi ||s_s||v|_s^2 \leq ||c_s||v|_s^2. \end{aligned}$$

Theorem (RS, Vassilevski, Zikatanov, MMS 2011)

Let Assumptions A1-3 hold. Then $\pi u = \sum_k f_k(u)\psi_k$ satisfies

 $|\pi u|_a \leq |u|_a$ and $||u - \pi u|| \leq \sqrt{c_a}|u|_a$ for all $u \in V$.

(Note that this is independent of the constants c_q and c_f in A2 and A3.)

Proof.

• Given $u \in V$, πu minimizes energy subject to $f_k(v) = f_k(u)$. Thus it is a projection and $|\pi u|_a \le |u|_a$.

② It follows from A3 and the fact that $f_k(
u-\pi
u)=0$ that

$$\begin{aligned} \|v - \pi v\|^2 &\leq c_a |v - \pi v|_a^2 + c_f \sum_{l=1}^m |f(v - \pi v)|^2 &= c_a |v - \pi v|_a^2 \\ &\leq c_a |l - \pi|_a^2 |v|_a^2 \leq c_a |\pi|_a^2 |v|_a^2 \leq c_a |v|_a^2. \end{aligned}$$

Theorem (RS, Vassilevski, Zikatanov, MMS 2011)

Let Assumptions A1-3 hold. Then $\pi u = \sum_k f_k(u)\psi_k$ satisfies

 $|\pi u|_a \leq |u|_a$ and $||u - \pi u|| \leq \sqrt{c_a} |u|_a$ for all $u \in V$.

(Note that this is independent of the constants c_q and c_f in A2 and A3.)

Proof.

- Given $u \in V$, πu minimizes energy subject to $f_k(v) = f_k(u)$. Thus it is a projection and $|\pi u|_a \le |u|_a$.
- 2 It follows from A3 and the fact that $f_k(v \pi v) = 0$ that

$$\|v - \pi v\|^{2} \leq c_{a} |v - \pi v|^{2}_{a} + c_{f} \sum_{l=1}^{m} |f(v - \pi v)|^{2} = c_{a} |v - \pi v|^{2}_{a}$$

$$\leq c_{a} |I - \pi|^{2}_{a} |v|^{2}_{a} \leq c_{a} |\pi|^{2}_{a} |v|^{2}_{a} \leq c_{a} |v|^{2}_{a}.$$

In our specific model problem considered above

- Assumption A1 is naturally satisfied on any subdomain Ω_ℓ with H = L₂(Ω_ℓ) and ||v|| = ∫_{Ω_ℓ} αv² dx.
- Assumption A2 simply means the functionals {*f_k*} should be continuous and linearly independent.
- Coarse space robustness reduced to verifying Assumption A3
 - For one functional reduces to (WPI) and quasi-monotonicity.
 - For more then one functional opens possibility of coefficient robustness **even** for **non-quasi-monotone** coefficients.

More importantly: can be applied also to other problems, e.g. **elasticity, Stokes, ...**

In our specific model problem considered above

- Assumption A1 is naturally satisfied on any subdomain Ω_ℓ with H = L₂(Ω_ℓ) and ||v|| = ∫_{Ω_ℓ} αv² dx.
- Assumption A2 simply means the functionals $\{f_k\}$ should be continuous and linearly independent.
- Coarse space robustness reduced to verifying Assumption A3
 - For one functional reduces to (WPI) and quasi-monotonicity.
 - For more then one functional opens possibility of coefficient robustness **even** for **non-quasi-monotone** coefficients.

More importantly: can be applied also to other problems, e.g. **elasticity, Stokes, ...**

- Upscaling for model elliptic problem at high contrast (extends to more complicated problems)
- Analysis difficult without scale separation and at high contrast
- Robust variational multiscale method

- Philosophy & New theoretical tools:
 - Start with V_H that has uniform, stable L^2 -approx. properties
 - Find stable, weighted quasi-interpolator (weighted Poincaré).
 - \sim a-orthogonalise basis fcts: (local) \rightarrow new multiscale space $V_{H}^{\rm m}$
 - Leads to uniform H-optimal convergence (in energy & EF
 - Bramble-Hilbert: uniform L²-approx. with V₁₁ ==GMsFEM (for general coefficients)
 - Question is how to (formulate and) prove (Q12-4) in that case.
 Start by doing more practical investigations!
- Some (sub-optimal) energy-norm estimates for GMsFEM in [Efendiev, Galvis, Wu, JCP '11], [Efendiev, Galvis, Li, Presho '13]

- Upscaling for model elliptic problem at high contrast (extends to more complicated problems)
- Analysis difficult without scale separation and at high contrast
- Robust variational multiscale method

- Philosophy & New theoretical tools:
 - Start with V_H that has uniform, stable L²-approx. properties
 - Find stable, weighted quasi-interpolator (weighted Poincaré)
 - ullet a-orthogonalise basis fcts. (local) o new multiscale space $V_H^{ ext{ms}}$
 - Leads to uniform H-optimal convergence (in energy & L²
 - Bramble-Hilbert: uniform L²-approx. with V_H =GMsFEM (for general coefficients)
 - Question is how to (formulate and) prove (QI2-4) in that case. Start by doing more practical investigations!
- Some (sub-optimal) energy-norm estimates for GMsFEM in [Efendiev, Galvis, Wu, JCP '11], [Efendiev, Galvis, Li, Presho '13]

- Upscaling for model elliptic problem at high contrast (extends to more complicated problems)
- Analysis difficult without scale separation and at high contrast
- Robust variational multiscale method

- Philosophy & New theoretical tools:
 - Start with V_H that has uniform, stable L^2 -approx. properties
 - Find stable, weighted quasi-interpolator (weighted Poincaré
 - ullet a-orthogonalise basis fcts. (local) ightarrow new multiscale space $V_H^{
 m ms}$
 - Leads to uniform H-optimal convergence (in energy & L
 - Bramble-Hilbert: uniform L²-approx. with V_H =GMsFEM (for general coefficients)
 - Question is how to (formulate and) prove (QI2-4) in that case. Start by doing more practical investigations!
- Some (sub-optimal) energy-norm estimates for GMsFEM in [Efendiev, Galvis, Wu, JCP '11], [Efendiev, Galvis, Li, Presho '13]

- Upscaling for model elliptic problem at high contrast (extends to more complicated problems)
- Analysis difficult without scale separation and at high contrast
- Robust variational multiscale method

- Philosophy & New theoretical tools:
 - Start with V_H that has uniform, stable L^2 -approx. properties
 - Find stable, weighted quasi-interpolator (weighted Poincaré)
 - ullet a-orthogonalise basis fcts. (local) ightarrow new multiscale space $V_H^{
 m ms}$
 - Leads to uniform H-optimal convergence (in energy & L
 - Bramble-Hilbert: uniform L²-approx. with V_H =GMsFEM (for general coefficients)
 - Question is how to (formulate and) prove (QI2-4) in that case. Start by doing more practical investigations!
- Some (sub-optimal) energy-norm estimates for GMsFEM in [Efendiev, Galvis, Wu, JCP '11], [Efendiev, Galvis, Li, Presho '13]

- Upscaling for model elliptic problem at high contrast (extends to more complicated problems)
- Analysis difficult without scale separation and at high contrast
- Robust variational multiscale method

- Philosophy & New theoretical tools:
 - Start with V_H that has uniform, stable L^2 -approx. properties
 - Find stable, weighted quasi-interpolator (weighted Poincaré)
 - a-orthogonalise basis fcts. (local) \rightarrow new multiscale space $V_H^{\sf ms}$
 - Leads to uniform H-optimal convergence (in energy & L
 - Bramble-Hilbert: uniform L²-approx. with V_H =GMsFEM (for general coefficients)
 - Question is how to (formulate and) prove (Ql2-4) in that case. Start by doing more practical investigations!
- Some (sub-optimal) energy-norm estimates for GMsFEM in [Efendiev, Galvis, Wu, JCP '11], [Efendiev, Galvis, Li, Presho '13]

- Upscaling for model elliptic problem at high contrast (extends to more complicated problems)
- Analysis difficult without scale separation and at high contrast
- Robust variational multiscale method

- Philosophy & New theoretical tools:
 - Start with V_H that has uniform, stable L^2 -approx. properties
 - Find stable, weighted quasi-interpolator (weighted Poincaré)
 - *a*-orthogonalise basis fcts. (local) \rightarrow new multiscale space V_H^{ms}
 - Leads to uniform *H*-optimal convergence (in energy & L^2)
 - Bramble-Hilbert: uniform L²-approx. with V_H =GMsFEM (for general coefficients)
 - Question is how to (formulate and) prove (Ql2-4) in that case. Start by doing more practical investigations!
- Some (sub-optimal) energy-norm estimates for GMsFEM in [Efendiev, Galvis, Wu, JCP '11], [Efendiev, Galvis, Li, Presho '13]

- Upscaling for model elliptic problem at high contrast (extends to more complicated problems)
- Analysis difficult without scale separation and at high contrast
- Robust variational multiscale method

- Philosophy & New theoretical tools:
 - Start with V_H that has uniform, stable L^2 -approx. properties
 - Find stable, weighted quasi-interpolator (weighted Poincaré)
 - *a*-orthogonalise basis fcts. (local) \rightarrow new multiscale space V_H^{ms}
 - Leads to uniform *H*-optimal convergence (in energy & L^2)
 - Bramble-Hilbert: uniform *L*²-approx. with *V_H* =GMsFEM (for general coefficients)
 - Question is how to (formulate and) prove (Ql2-4) in that case. Start by doing more practical investigations!
- Some (sub-optimal) energy-norm estimates for GMsFEM in [Efendiev, Galvis, Wu, JCP '11], [Efendiev, Galvis, Li, Presho '13]

- Upscaling for model elliptic problem at high contrast (extends to more complicated problems)
- Analysis difficult without scale separation and at high contrast
- Robust variational multiscale method

- Philosophy & New theoretical tools:
 - Start with V_H that has uniform, stable L^2 -approx. properties
 - Find stable, weighted quasi-interpolator (weighted Poincaré)
 - *a*-orthogonalise basis fcts. (local) \rightarrow new multiscale space $V_H^{\sf ms}$
 - Leads to uniform *H*-optimal convergence (in energy & L^2)
 - Bramble-Hilbert: uniform *L*²-approx. with *V_H* =GMsFEM (for general coefficients)
 - Question is how to (formulate and) prove (Ql2-4) in that case. Start by doing more practical investigations!
- Some (sub-optimal) energy-norm estimates for GMsFEM in [Efendiev, Galvis, Wu, JCP '11], [Efendiev, Galvis, Li, Presho '13]

- Upscaling for model elliptic problem at high contrast (extends to more complicated problems)
- Analysis difficult without scale separation and at high contrast
- Robust variational multiscale method

- Philosophy & New theoretical tools:
 - Start with V_H that has uniform, stable L^2 -approx. properties
 - Find stable, weighted quasi-interpolator (weighted Poincaré)
 - *a*-orthogonalise basis fcts. (local) \rightarrow new multiscale space $V_H^{\sf ms}$
 - Leads to uniform *H*-optimal convergence (in energy & L^2)
 - Bramble-Hilbert: uniform *L*²-approx. with *V_H* =GMsFEM (for general coefficients)
 - Question is how to (formulate and) prove (Ql2-4) in that case. Start by doing more practical investigations!
- Some (sub-optimal) energy-norm estimates for GMsFEM in [Efendiev, Galvis, Wu, JCP '11], [Efendiev, Galvis, Li, Presho '13]

References

- D Peterseim and RS, Rigorous Numerical Upscaling of Elliptic Multiscale Problems at High Contrast, in preparation.
- **B RS** and **L Zikatanov**, Necessary conditions for *L*₂-approximation in the case of unresolved coefficients, in preparation.
- 9 P Henning and D Peterseim, Oversampling for the Multiscale FE Method, Multiscale Model. Simul. 11:1149-1175, 2013
- A Malqvist and D Peterseim, Localization of Elliptic Multiscale Problems, to appear in *Math. Comp.*, 2013 [arXiv:1110.0692]
- **5** C Pechstein and RS, Weighted Poincare Inequalities, *IMA J. Num. Anal.* **33**:652–686, 2012
- RS, P Vassilevski and L Zikatanov, Mutilevel Methods for Elliptic Problems with Highly Varying Coefficients on Non-Aligned Coarse Grids, SIAM J. Num. Anal. 50:1675-1694, 2012 (Weighted Quasi-Interpolant)
- RS, P Vassilevski and L Zikatanov, Weak Approximation Properties of Elliptic Projections with Functional Constraints, *Multiscale Model. Simul.* 9:1677–1699, 2011 (Bramble-Hilbert Lemma)

References 5-7 are also available as preprints on my website:

http://people.bath.ac.uk/~masrs/publications.html