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DG method for hyperbolic equations

We are interested in solving a hyperbolic conservation law

ut + f(u)x = 0

In 2D it is

ut + f(u)x + g(u)y = 0

and in system cases u is a vector, and the Jacobian f ′(u) is

diagonalizable with real eigenvalues.
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Several properties of the solutions to hyperbolic conservation laws.

• The solution u may become discontinuous regardless of the

smoothness of the initial conditions.

• Weak solutions are not unique. The unique, physically relevant

entropy solution satisfies additional entropy inequalities

U(u)t + F (u)x ≤ 0

in the distribution sense, where U(u) is a convex scalar function of u

and the entropy flux F (u) satisfies F ′(u) = U ′(u)f ′(u).
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To solve the hyperbolic conservation law:

ut + f(u)x = 0, (1)

we multiply the equation with a test function v, integrate over a cell

Ij = [xj− 1

2

, xj+ 1

2

], and integrate by parts:

∫

Ij

utvdx −

∫

Ij

f(u)vxdx + f(uj+ 1

2

)vj+ 1

2

− f(uj− 1

2

)vj− 1

2

= 0
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Now assume both the solution u and the test function v come from a finite

dimensional approximation space Vh, which is usually taken as the space

of piecewise polynomials of degree up to k:

Vh =
{

v : v|Ij
∈ P k(Ij), j = 1, · · · , N

}

However, the boundary terms f(uj+ 1

2

), vj+ 1

2

etc. are not well defined

when u and v are in this space, as they are discontinuous at the cell

interfaces.
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From the conservation and stability (upwinding) considerations, we take

• A single valued monotone numerical flux to replace f(uj+ 1

2

):

f̂j+ 1

2

= f̂(u−

j+ 1

2

, u+
j+ 1

2

)

where f̂(u, u) = f(u) (consistency); f̂(↑, ↓) (monotonicity) and f̂ is

Lipschitz continuous with respect to both arguments.

• Values from inside Ij for the test function v

v−

j+ 1

2

, v+
j− 1

2
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Hence the DG scheme is: find u ∈ Vh such that
∫

Ij

utvdx −

∫

Ij

f(u)vxdx + f̂j+ 1

2

v−

j+ 1

2

− f̂j− 1

2

v+
j− 1

2

= 0 (2)

for all v ∈ Vh.

Notice that, for the piecewise constant k = 0 case, we recover the well

known first order monotone finite volume scheme:

(uj)t +
1

h

(

f̂(uj, uj+1) − f̂(uj−1, uj)
)

= 0.
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Time discretization could be by the TVD Runge-Kutta method (Shu and

Osher, JCP 88). For the semi-discrete scheme:

du

dt
= L(u)

where L(u) is a discretization of the spatial operator, the third order TVD

Runge-Kutta is simply:

u(1) = un + ∆tL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1))

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2))
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DG method for hyperbolic equations with δ-singularities

We develop and analyze DG methods for solving hyperbolic conservation

laws

ut + f(u)x = g(x, t), (x, t) ∈ R × (0, T ],

u(x, 0) = u0(x), x ∈ R,
(3)

where the initial condition u0, or the source term g(x, t), or the solution

u(x, t) contains δ-singularities.
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• Such problems appear often in applications and are difficult to

approximate numerically, especially for finite difference schemes.

• Many numerical techniques rely on modifications with smooth kernels

(mollification) and hence may severely smear such singularities,

leading to large errors in the approximation.

In Yang and Shu, Num Math 2013 and Yang, Wei and Shu, JCP 2013, we

develop, analyze and apply DG methods for solve hyperbolic equations

with δ-singularities. The DG methods are based on weak formulations and

can be designed directly to solve such problems without modifications,

leading to very accurate results.
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Linear equations with singular initial condition

We consider the linear model equation

ut + βux = 0

u(x, 0) = u0(x)

where β is a constant, u0(x) has compact support, has a sole

δ-singularity at x = 0 and is sufficiently smooth everywhere else.

Even though the initial condition u0(x) is no longer in L2, it does have an

L2-projection to the DG space Vh, which we use as the initial condition for

the DG scheme. For problems involving δ-singularities, negative-order

norm estimates are more natural. We have the following theorem in Yang

and Shu, Num Math 2013:
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Theorem: By taking Ω0 + 2supp(K2k+2,k+1
h ) ⊂⊂ Ω1 ⊂⊂ Ω\RT , we

have

‖u(T ) − uh(T )‖−(k+1) ≤ Chk, (4)

‖u(T ) − uh(T )‖−(k+2) ≤ Chk+1/2, (5)

‖u(T ) − uh(T )‖−(k+1),Ω1
≤ Ch2k+1, (6)

‖u(T ) − K2k+2,k+1
h ∗ uh(T )‖Ω0

≤ Ch2k+1, (7)

where the positive constant C does not depend on h. Here the mesh is

assumed to be uniform for (7) but can be regular and non-uniform for the

other three inequalities.
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Several comments:

• We use the results about the pollution region in Zhang and Shu, Num

Math 2014, which is also valid in the current case with δ-singularities.

• We follow the proof of negative-order error estimates and

post-processing for DG methods solving linear hyperbolic equations

with smooth solutions in Cockburn, Luskin, Shu and Süli Math Comp

2003 with suitable adjustments.

Division of Applied Mathematics, Brown University



DG METHOD FOR HYPERBOLIC EQUATIONS WITH δ-SINGULARITIES

Numerical example: We solve the following problem

ut + ux = 0, (x, t) ∈ [0, π] × (0, 1],

u(x, 0) = sin(2x) + δ(x − 0.5), x ∈ [0, π],

(8)

with periodic boundary condition u(0, t) = u(π, t). Clearly, the exact

solution is

u(x, t) = sin(2x − 2t) + δ(x − t − 0.5).
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Table 1: L2-norm of the error between the numerical solution and the exact

solution for equation (8) after post-processing in the region away from the

singularity.

P1 polynomial P2 polynomial P3 polynomial

N d error order error order error order

200 0.2 6.88E-05 - 8.40e-07 - 1.48E-09 -

300 0.2 1.41E-05 3.92 3.56e-10 19.2 3.98E-13 20.3

400 0.2 5.89E-06 3.02 1.98e-11 10.1 4.42E-16 23.7

500 0.2 3.01E-06 3.01 6.13e-12 5.25 7.49E-17 7.95

600 0.2 1.74E-06 3.00 2.37e-12 5.21 1.76E-17 7.94
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We consider the following two dimensional problem

ut + ux + uy = 0, (x, y, t) ∈ [0, 2π] × [0, 2π] ×

u(x, 0) = sin(x + y) + δ(x + y − 2π), (x, y) ∈ [0, 2π] × [0, 2π],

(9)

with periodic boundary condition. Clearly, the exact solution is

u(x, t) = sin(x + y − 2t) + δ(x + y − 2t) + δ(x + y − 2t − 2π).

We use Qk polynomial approximation spaces with k = 1 and 2.
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Table 2: L2-norm of the error between the numerical solution and the exact

solution for equation (9) after post-processing in the region away from the

singularity.

Q1 polynomial Q2 polynomial

N d error order error order

400 0.4 2.60E-05 - 3.23e-08 -

500 0.4 1.24E-05 3.32 2.47e-10 20.0

600 0.4 7.16E-06 3.01 1.19e-11 16.6

700 0.4 4.50E-06 3.01 5.11e-12 5.47

800 0.4 3.01E-06 3.02 2.53e-12 5.29
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The theory generalizes to linear systems in a straightforward way. We

solve the following linear system

ut − vx = 0, (x, t) ∈ [0, 2] × (0, 0.4],

vt − ux = 0, (x, t) ∈ [0, 2] × (0, 0.4],

u(x, 0) = δ(x − 1), v(x, 0) = 0, x ∈ [0, 2].

(10)

Clearly, the exact solution (the Green’s function) is

u(x, t) =
1

2
δ(x − 1 − t) +

1

2
δ(x − 1 + t),

v(x, t) =
1

2
δ(x − 1 + t) −

1

2
δ(x − 1 − t).
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Figure 1: Solutions of u (left) and v (right) for (10) at t = 0.4.
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Linear equations with singular source terms

We consider the linear model equation

ut(x, t) + Lu(x, t) = g(x, t), (x, t) ∈ Ω × (0,∞),

u(x, 0) = 0, x ∈ Ω,

with L being a linear differential operator that does not involve time

derivatives and g(x, t) is a singular source term, for example

g(x, t) = δ(x). The singular source term can be implemented in the DG

scheme in a straightforward way, since it involves only the integrals of the

singular source term with test functions in Vh.

By using Duhamel’s principle, we can prove the following theorem (Yang

and Shu, Num Math 2013):
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Theorem: Denote

RT = Ii ∪ (T − C log(1/h)h1/2, T + C log(1/h)h1/2), where Ii is

the cell which contains the concentration of the δ-singularity on the source

term. Then we have the following estimates

‖u(T ) − uh(T )‖−(k+1) ≤ Chk, (11)

‖u(T ) − uh(T )‖−(k+2) ≤ Chk+1/2, (12)

‖u − uh‖−(k+1),Ω1
≤ Ch2k+1, (13)

‖u(T ) − K2k+2,k+1
h ∗ uh(T )‖Ω0

≤ Ch2k+1, (14)

where Ω0 + 2supp(K2k+2,k+1
h ) ⊂⊂ Ω1 ⊂⊂ R\RT . Here the mesh is

assumed to be uniform for (14) but can be regular and non-uniform for the

other three inequalities.
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Numerical example: We solve the following problem

ut + ux = δ(x − π), (x, t) ∈ [0, 2π] × (0, 1],

u(x, 0) = sin(x), x ∈ [0, 2π],

u(0, t) = 0, t ∈ (0, 1].

(15)

Clearly, the exact solution is

u(x, t) = sin(x − t) + χ[π,π+t],

where χ[a,b] denotes the indicator function of the interval [a, b].
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Table 3: L2-norm of the error between the numerical solution and the exact

solution for equation (15) after post-processing in the region away from the

singularity.

P1 polynomial P2 polynomial

N d error order error order

401 0.2 1.74E-06 - 4.29E-08 -

801 0.2 5.92E-09 8.22 6.80E-13 15.9

1601 0.2 7.36E-10 3.03 1.34E-17 12.3

3201 0.2 9.19E-11 3.01 3.86E-18 5.13

6401 0.2 1.15E-11 3.01 1.16E-19 5.07
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High order accuracy bound-preserving limiters

We notice that the unmodulated DG scheme for solving problems with

δ-function singularities generates spurious oscillations (Gibbs

phenomenon). While such oscillations also happen when the DG scheme

is used to solve discontinuous solutions, they are more severe for

δ-function singularities.

While in some of the applications, e.g. the linear problems mentioned

above, such oscillations are just unpleasant visually but do not lead to

instabilities of the scheme, for other applications, especially nonlinear

systems to be studied below, these oscillations may lead to unphysical

regimes in which the PDE is ill-posed, hence causing immediate blowups

of the scheme.
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Many slope limiters such as minmod or MUSCL limiters, which are

designed for discontinuous solution, are too severe for δ-function

singularities (which would prefer slope to be very large), leading to serious

deterioration of resolution when used.

Therefore, a milder limiter which can enforce the physical bounds yet can

maintain the originally designed high order accuracy of the DG scheme is

desired.
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For the scalar conservation laws

ut + ▽ · F(u) = 0, u(x, 0) = u0(x). (16)

An important property of the entropy solution (which may be

discontinuous) is that it satisfies a strict maximum principle: If

M = max
x

u0(x), m = min
x

u0(x), (17)

then u(x, t) ∈ [m,M ] for any x and t.
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First order monotone schemes can maintain the maximum principle. For

the one-dimensional conservation law

ut + f(u)x = 0,

the first order monotone scheme

un+1
j = Hλ(u

n
j−1, u

n
j , un

j+1)

= un
j − λ[h(un

j , un
j+1) − h(un

j−1, u
n
j )]

where λ = ∆t
∆x

and h(u−, u+) is a monotone flux (h(↑, ↓)), satisfies

Hλ(↑, ↑, ↑)

under a suitable CFL condition

λ ≤ λ0.
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Also, for any constant c,

Hλ(c, c, c) = c − λ[h(c, c) − h(c, c)] = c.

Therefore, if

m ≤ un
j−1, u

n
j , un

j+1 ≤ M

then

un+1
j = Hλ(u

n
j−1, u

n
j , un

j+1) ≥ Hλ(m,m,m) = m,

and

un+1
j = Hλ(u

n
j−1, u

n
j , un

j+1) ≤ Hλ(M,M,M) = M.
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However, for higher order linear schemes, i.e. schemes which are linear

for a linear PDE

ut + aux = 0 (18)

for example the second order accurate Lax-Wendroff scheme

un+1
j =

aλ

2
(1 + aλ)un

j−1 + (1 − a2λ2)un
j −

aλ

2
(1 − aλ)un

j+1

where λ = ∆t
∆x

and |a|λ ≤ 1, the maximum principle is not satisfied. In

fact, no linear schemes with order of accuracy higher than one can satisfy

the maximum principle (Godunov Theorem).
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Therefore, nonlinear schemes, namely schemes which are nonlinear even

for linear PDEs, have been designed to overcome this difficulty. These

include roughly two classes of schemes:

• TVD schemes. Most TVD (total variation diminishing) schemes also

satisfy strict maximum principle, even in multi-dimensions. TVD

schemes can be designed for any formal order of accuracy for

solutions in smooth, monotone regions. However, all TVD schemes

will degenerate to first order accuracy at smooth extrema.

• TVB schemes, ENO schemes, WENO schemes. These schemes do

not insist on strict TVD properties, therefore they do not satisfy strict

maximum principles, although they can be designed to be arbitrarily

high order accurate for smooth solutions.
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Remark: If we insist on the maximum principle interpreted as

m ≤ un+1
j ≤ M, ∀j

if

m ≤ un
j ≤ M, ∀j,

where un
j is either the approximation to the point value u(xj, t

n) for a

finite difference scheme, or to the cell average 1
∆x

∫ xj+1/2

xj−1/2
u(x, tn)dx for

a finite volume or DG scheme, then the scheme can be at most second

order accurate (proof due to Harten, see Zhang and Shu, Proceedings of

the Royal Society A, 2011).
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“Proof”: Consider finite difference, solving

ut + ux = 0

with the initial condition

u(x, 0) = sin(x).

Put the mesh so that

xj0 =
π

2
−

∆x

2
, xj0+1 =

π

2
+

∆x

2
,

then we have

M = max
j

u0
j = u0

j0
= sin

(

π

2
−

∆x

2

)

≤ 1 − C∆x2

for a constant C , when ∆x ≪ 1.
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By the definition of the the maximum principle given above, we have

max
j

u1
j ≤ max

j
u0

j ≤ 1 − C∆x2.

Therefore, if we take ∆t = ∆x
2

, the error at xj0 and the first time step

satisfies

|uexact(xj0 ,∆t)−u1
j0
| = | sin

(π

2

)

−u1
j0
| ≥ 1−(1−C∆x2) = C∆x2.

That is, even after one time step, the accuracy is at most second order.

The same proof works for finite volume schemes.
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A high order discontinuous Galerkin scheme has the following algorithm

flowchart:

(1) Given un(x) (piecewise polynomial with the cell average ūn
j )

(2) evolve by, e.g. Runge-Kutta time discretization to get un+1(x)

(with the cell average{ūn+1
j }

(3) return to (1)
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Therefore, instead of requiring

m ≤ ūn+1
j ≤ M, ∀j

if

m ≤ ūn
j ≤ M, ∀j,

we will require

m ≤ un+1(x) ≤ M, ∀x

if

m ≤ un(x) ≤ M, ∀x.
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Maximum-principle-preserving for scalar conservation la ws

The flowchart for designing a high order finite volume or DG scheme

which obeys a strict maximum principle is as follows:

1. Start with un(x) which is high order accurate

|u(x, tn) − un(x)| ≤ C∆xp

and satisfies

m ≤ un(x) ≤ M, ∀x

therefore of course we also have

m ≤ ūn
j ≤ M, ∀j.
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2. Evolve for one time step to get

m ≤ ūn+1
j ≤ M, ∀j. (19)

3. Given (19) above, obtain un+1(x) (reconstruction or evolution) which

• satisfies the maximum principle

m ≤ un+1(x) ≤ M, ∀x;

• is high order accurate

|u(x, tn+1) − un+1(x)| ≤ C∆xp.
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Three major difficulties

1. The first difficulty is how to evolve in time for one time step to

guarantee

m ≤ ūn+1
j ≤ M, ∀j. (20)

This is very difficult to achieve. Previous works use one of the

following two approaches:
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• Use exact time evolution. This can guarantee

m ≤ ūn+1
j ≤ M, ∀j.

However, it can only be implemented with reasonable cost for linear

PDEs, or for nonlinear PDEs in one dimension. This approach was

used in, e.g., Jiang and Tadmor, SISC 1998; Liu and Osher,

SINUM 1996; Sanders, Math Comp 1988; Qiu and Shu, SINUM

2008; Zhang and Shu, SINUM 2010; to obtain TVD schemes or

maximum-principle-preserving schemes for linear and nonlinear

PDEs in one dimension or for linear PDEs in multi-dimensions, for

second or third order accurate schemes.
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• Use simple time evolution such as SSP Runge-Kutta or multi-step

methods. However, additional limiting will be needed on un(x)

which will destroy accuracy near smooth extrema.

We have figured out a way to obtain

m ≤ ūn+1
j ≤ M, ∀j

with simple Euler forward or SSP Runge-Kutta or multi-step methods

without losing accuracy on the limited un(x):
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The evolution of the cell average for a higher order finite volume or DG

scheme satisfies

ūn+1
j = G(ūn

j , u
−

j− 1

2

, u+
j− 1

2

, u−

j+ 1

2

,u+
j+ 1

2

)

= ūn
j − λ[h(u−

j+ 1

2

, u+
j+ 1

2

) − h(u−

j− 1

2

, u+
j− 1

2

)],

where

G(↑, ↑, ↓, ↓, ↑)

therefore there is no maximum principle. The problem is with the two

arguments u+
j− 1

2

and u−

j+ 1

2

which are values at points inside the cell

Ij .
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The polynomial pj(x) (either reconstructed in a finite volume method

or evolved in a DG method) is of degree k, defined on Ij such that ūn
j

is its cell average on Ij , u+
j− 1

2

= pj(xj− 1

2

) and u−

j+ 1

2

= pj(xj+ 1

2

).

We take a Legendre Gauss-Lobatto quadrature rule which is exact for

polynomials of degree k, then

ūn
j =

m
∑

ℓ=0

ωℓpj(yℓ)

with y0 = xj− 1

2

, ym = xj+ 1

2

. The scheme for the cell average is then

rewritten as
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ūn+1
j = ωm

[

u−

j+ 1

2

−
λ

ωm

(

h(u−

j+ 1

2

, u+
j+ 1

2

) − h(u+
j− 1

2

, u−

j+ 1

2

)
)

]

+ω0

[

u+
j− 1

2

−
λ

ω0

(

h(u+
j− 1

2

, u−

j+ 1

2

) − h(u−

j− 1

2

, u+
j− 1

2

)
)

]

+

m−1
∑

ℓ=1

ωℓpj(yℓ)

= ωmHλ/ωm(u+
j− 1

2

, u−

j+ 1

2

, u+
j+ 1

2

) + ω0Hλ/ω0
(u−

j− 1

2

, u+
j− 1

2

, u−

j+ 1

2

)

+
m−1
∑

ℓ=1

ωℓpj(yℓ).
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Therefore, if

m ≤ pj(yℓ) ≤ M

at all Legendre Gauss-Lobatto quadrature points and a reduced CFL

condition

λ/ωm = λ/ω0 ≤ λ0

is satisfied, then

m ≤ ūn+1
j ≤ M.
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2. The second difficulty is: given

m ≤ ūn+1
j ≤ M, ∀j

how to obtain an accurate un+1(x) (reconstruction or limited DG

evolution) which satisfies

m ≤ un+1(x) ≤ M, ∀x.

Previous work was mainly for relatively lower order schemes (second

or third order accurate), and would typically require an evaluation of

the extrema of un+1(x), which, for a piecewise polynomial of higher

degree, is quite costly.
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We have figured out a way to obtain such un+1(x) with a very simple

scaling limiter, which only requires the evaluation of un+1(x) at

certain pre-determined quadrature points and does not destroy

accuracy:
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We replace pj(x) by the limited polynomial p̃j(x) defined by

p̃j(x) = θj(pj(x) − ūn
j ) + ūn

j

where

θj = min

{∣

∣

∣

∣

M − ūn
j

Mj − ūn
j

∣

∣

∣

∣

,

∣

∣

∣

∣

m − ūn
j

mj − ūn
j

∣

∣

∣

∣

, 1

}

,

with

Mj = max
x∈Sj

pj(x), mj = min
x∈Sj

pj(x)

where Sj is the set of Legendre Gauss-Lobatto quadrature points of

cell Ij .

Clearly, this limiter is just a simple scaling of the original polynomial

around its average.
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The following lemma, guaranteeing the maintenance of accuracy of

this simple limiter, is proved in Zhang and Shu, JCP 2010a:

Lemma: Assume ūn
j ∈ [m,M ] and pj(x) is an O(∆xp)

approximation, then p̃j(x) is also an O(∆xp) approximation.

We have thus obtained a high order accurate scheme satisfying the

following maximum principle: If

m ≤ un(x) ≤ M, ∀x ∈ Sj,

then

m ≤ un+1(x) ≤ M, ∀x ∈ Sj.

Recall that Sj is the set of Legendre Gauss-Lobatto quadrature points

of cell Ij .
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3. The third difficulty is how to generalize the algorithm and result to 2D

(or higher dimensions). Algorithms which would require an evaluation

of the extrema of the reconstructed polynomials un+1(x, y) would not

be easy to generalize at all.

Our algorithm uses only explicit Euler forward or SSP (also called

TVD) Runge-Kutta or multi-step time discretizations, and a simple

scaling limiter involving just evaluation of the polynomial at certain

quadrature points, hence easily generalizes to 2D or higher

dimensions on structured or unstructured meshes, with strict

maximum-principle-satisfying property and provable high order

accuracy.

Division of Applied Mathematics, Brown University



DG METHOD FOR HYPERBOLIC EQUATIONS WITH δ-SINGULARITIES

The technique has been generalized to the following situations maintaining

uniformly high order accuracy:

• 2D scalar conservation laws on rectangular or triangular meshes with

strict maximum principle (Zhang and Shu, JCP 2010a; Zhang, Xia and

Shu, JSC 2012).

• 2D incompressible equations in the vorticity-streamfunction

formulation (with strict maximum principle for the vorticity), and 2D

passive convections in a divergence-free velocity field, i.e.

ωt + (uω)x + (vω)x = 0,

with a given divergence-free velocity field (u, v), again with strict

maximum principle (Zhang and Shu, JCP 2010a; Zhang, Xia and Shu,

JSC 2012).
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Positivity-preserving for systems

The framework of establishing maximum-principle-satisfying schemes for

scalar equations can be generalized to hyperbolic systems to preserve the

positivity of certain physical quantities, such as density and pressure of

compressible gas dynamics.
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Compressible Euler equations:

ut + f(u)x = 0

with

u =









ρ

ρv

E









, f(u) =









ρv

ρv2 + p

v(E + p)









,

where E = e + 1
2
ρv2. The internal energy e is related to density and

pressure through the equation of states (EOS). For the ideal gas, we have

e = p
γ−1

with γ = 1.4 for air.
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The main ingredients for designing positivity-preserving schemes for

systems are:

• A first order explicit scheme which can keep the positivity of the

desired quantities (e.g. density and pressure) under a suitable CFL

condition.

Examples include the Godunov scheme, Lax-Friedrichs scheme,

kinetic scheme, HLLC scheme, etc.

• The quantity for which positivity is desired is one of the components of

the conserved variable u (for example the density ρ), or is a concave

function of the conserved variable u (for example the pressure p or the

internal energy e). Under this assumption, the region of positivity of

the desired quantities is a convex region in the u space.
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With these ingredients, the technique to enforce maximum-principle for

scalar equations can be directly generalized to enforce positivity of the

desired quantities without affecting the high order accuracy of the finite

volume or DG schemes. That is, we have a high order scheme satisfying

positivity-preserving in the following sense: If un(x) has positive density

and pressure for all x ∈ Sj , then un+1(x) also has positive density and

pressure for all x ∈ Sj . Recall that Sj is the set of Legendre

Gauss-Lobatto quadrature points of cell Ij .
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Positivity-preserving finite volume or DG schemes have been designed for:

• One and multi-dimensional compressible Euler equations maintaining

positivity of density and pressure (Zhang and Shu, JCP 2010b; Zhang,

Xia and Shu, JSC 2012).

• One and two-dimensional shallow water equations maintaining

non-negativity of water height and well-balancedness for problems

with dry areas (Xing, Zhang and Shu, Advances in Water Resources

2010; Xing and Shu, Advances in Water Resources 2011).
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• One and multi-dimensional compressible Euler equations with source

terms (geometric, gravity, chemical reaction, radiative cooling)

maintaining positivity of density and pressure (Zhang and Shu, JCP

2011).

• One and multi-dimensional compressible Euler equations with

gaseous detonations maintaining positivity of density, pressure and

reactant mass fraction, with a new and simplified implementation of

the pressure limiter. DG computations are stable without using the

TVB limiter (Wang, Zhang, Shu and Ning, JCP 2012).

• A minimum entropy principle satisfying high order scheme for gas

dynamics equations (Zhang and Shu, Num Math 2012).
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Applications

Rendez-vous algorithm

Even though our theory is established only for linear equations, the DG

algorithm can be easily implemented for nonlinear hyperbolic equations

involving δ-singularities.

In Canuto, Fagnani and Tilli, SIAM J Control and Optimization 2012, the

following problem

ρt + Fx = 0, x ∈ [0, 1], t > 0,

ρ(0, t) = u0(x), t > 0,
(21)

is studied. Here ρ is the density function, which is always positive.
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The flux F is given by

F (t, x) = v(t, x)ρ(t, x),

and the velocity v is defined by

v(t, x) =

∫

Rn

(y − x)ξ(y − x)ρ(t, y)dy,

where ξ(x) is a positive function and supported on a ball centered at zero

with radius R. Canuto et al. proved that when t tends to infinity, the

density function ρ will converge to some δ-singularities, and the distances

between any of them cannot be less than R. Some computational results

are shown in Canuto et al. based on a first order finite volume method.
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We use the DG algorithm with the positivity-preserving limiter in Zhang

and Shu JCP 2010, which can maintain positivity without affecting the high

order accuracy, to both the one and two dimensional Rendez-vous

algorithms, in Yang and Shu, Num Math 2013 and Yang, Wei and Shu,

JCP 2013.
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Figure 2: Numerical density at t = 1000 with N = 400 when using P0

(left) and P1 (right) polynomials.
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In 2D, the model is

ρt + div(vρ) = 0, x ∈ [−1, 1]2, t > 0,

ρ(x, 0) = ρ0(x), t > 0,
(22)

where the velocity v is defined by

v(x, t) =

∫

BR(x)

(y − x)ρ(y, t)dy.

In this example, we take R = 0.1 and

ρ0(x) =







1 r < 0.5,

0 r > 0.5,

where r = ‖x‖ is the Euclidean norm of x.
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In Canuto et al., the authors demonstrated that the exact solution should

be a single delta placed at the origin.

However, when we use rectangle meshes, we observe more than one

delta singularity for R sufficiently small. This is because the meshes are

not invariant under rotation.
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Figure 3: Numerical density ρ with a rectangular 100 × 100 mesh using

P0 elements. R = 0.08 (left) and R = 0.1 (right).
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To tackle this problem, we follow the same ideas in Cheng and Shu, JCP

2010; CiCP 2012, and construct a special equal-angle-zoned mesh. The

structure of the mesh is given in figure 4. By using such a special mesh,

the limit density is a single delta placed at the origin.
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Figure 4: Left: Equal-angle-zoned mesh. Right: Numerical density ρ for

(22) at t = 2000 with N = 200 using P0 elements.
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Pressureless Euler equations

Another important system admitting δ-singularities in its solutions is the

pressureless Euler equation

wt + f(w)x = 0, t > 0, x ∈ R, (23)

w =





ρ

m



 , f(w) =





m

ρu2



 ,

with m = ρu, where ρ is the density function and u is the velocity.

It is quite difficult to obtain stable schemes for solve this system, especially

for high order schemes.
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A good property of this system is that the density is always positive and

the velocity satisfies a maximum-principle. Thus, in 1D, the convex set

G =







w =





ρ

m



 : ρ > 0, aρ ≤ m ≤ bρ







,

where

a = minu0(x), b = maxu0(x), (24)

with u0 being the initial velocity, is invariant. In Yang, Wei and Shu, JCP

2013, we adapt the techniques in Zhang and Shu, JCP 2010 to design a

limiter to guarantee that our DG solution stays in set G without affecting

high order accuracy. This is also generalized to 2D. Our scheme is thus

very robust, stable and high order accurate for this pressureless Euler

system.
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We consider the following initial data

ρ0(x) = sin(x) + 2, u0(x) = sin(x) + 2, (25)

with periodic boundary condition. Clearly, the exact solution is

u(x, t) = u0(x0), ρ(x, t) =
ρ0(x0)

1 + u′

0(x0)
,

where x0 is given implicitly by

x0 + tu0(x0) = x.
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Table 4: L2-norm of the error between the numerical density and the exact

density for initial condition (25).

k=1 k=2 k=3

N error order error order error order

20 1.41E-02 - 6.84E-04 - 3.40e-5 -

40 4.18E-03 1.76 1.04E-04 2.72 2.82e-6 3.59

80 1.30E-03 1.68 1.55E-05 2.74 2.26e-7 3.64

160 4.24E-04 1.62 2.41E-06 2.69 1.83e-8 3.62

320 1.51E-04 1.49 3.80E-07 2.67 1.49e-9 3.63
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We consider the following initial condition

ρ0(x) =







1 x < 0,

0.25 x > 0,
u0(x) =







1 x < 0,

0 x > 0.
(26)

Clearly, the exact solution is

(ρ(x, t), u(x, t)) =







(1, 1) x < 2t/3,

(0.25, 0) x > 2t/3,

and at x = 2t
3

, the density should be a δ-function.
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Figure 5: Numerical density (left) and velocity (right) at t = 0.5 with P1

polynomials for initial condition (26).
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We consider the following initial condition

ρ(x, y, 0) = ρ0(x + y) = exp(sin(x + y)),

u(x, y, 0) = u0(x + y) = 1
3
(cos(x + y) + 2), (27)

v(x, y, 0) = v0(x + y) = 1
3
(sin(x + y) + 2).

The exact solution is

u(x, y, t) = u0(z0), v(x, y, t) = v0(z0), ρ(x, y, t) =
ρ0(z0)

1 + u′

0(z0) + v′

0(z

where z0 is given implicitly by

z0 + t(u0(z0) + v0(z0)) = x + y.
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Table 5: L2-norm of the error between the numerical density and the exact

density for initial condition (27).

k=1 k=2 k=3

N error order error order error order

10 0.512 - 0.107 - 3.42E-02 -

20 0.176 1.54 3.12E-02 1.78 3.57E-03 3.26

40 6.48E-02 1.44 8.52E-03 1.87 4.86E-04 2.88

80 2.32E-02 1.48 1.39E-03 2.62 3.97E-05 3.61

160 9.08E-03 1.35 1.92E-04 2.86 3.65E-06 3.45
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We consider the following initial condition

ρ(x, y, 0) =
1

100
, (u, v)(x, y, 0) = (−

1

10
cos θ,−

1

10
sin θ), (28)

where θ is the polar angle.

Since all the particles are moving towards the origin, the density function

at t > 0 should be a single delta at the origin.
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Figure 6: Numerical density (left) and velocity field (right) at t = 0.5 for the

initial condition (28).
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We consider the following initial condition

ρ(x, y, 0) =
1

10
, (u, v)(x, y, 0) =



























(−0.25,−0.25) x > 0, y > 0,

(0.25,−0.25) x < 0, y > 0,

(0.25, 0.25) x < 0, y < 0,

(−0.25, 0.25) x > 0, y < 0.

(29)

Figure 7 shows the numerical density and velocity field at t = 0.5. From

the figure, we can observe δ-singularities located at the origin and the two

axes.
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Figure 7: Numerical density (left) and velocity field (right) at t = 0.5 for

initial condition (29).
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We consider the following initial condition

ρ(x, y, 0) =
1

100
, (u, v)(x, y, 0) =







(cos θ, sin θ) r < 0.3,

(−1
2
cos θ,−1

2
sin θ) r > 0.3,

(30)

where r =
√

x2 + y2 and θ is the polar angle.

Figure 8 shows the numerical density (contour plot) and velocity field at

t = 0.5. From the figure, we can observe δ-shocks located on a circle and

vacuum inside.
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Figure 8: Numerical density (left) and velocity field (right) at t = 0.5 for

initial condition (30).
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We consider the following initial condition

ρ(x, y, 0) = 0.5, (u, v)(x, y, 0) =



























(0.3, 0.4) x > 0, y > 0,

(−0.4, 0.3) x < 0, y > 0,

(−0.3,−0.4) x < 0, y < 0,

(0.4,−0.3) x > 0, y < 0.

(31)

Figure 9 shows the numerical density (contour plot) and velocity field with

N = 50 at t = 0.4. From the figure, we can observe that the numerical

solution approximates the vacuum quite well.
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Figure 9: Numerical density (left) and velocity field (right) at t = 0.4 with

N = 50 for initial condition (31).
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Concluding remarks

• DG methods are suitable for computing solutions with δ-singularities,

because it satisfies a cell entropy inequality and is based on a weak

formulation.

• For linear model equations, the DG methods can be shown to

converge in negative norms when either the initial condition or the

source term contains δ-singularities. This convergence is of

O(hk+1/2) order in the whole domain and of O(h2k+1) order

O(h1/2 log(1/h)) away from the singularities. Post-processing then

produces O(h2k+1) order superconvergence in the strong L2 norm

O(h1/2 log(1/h)) away from the singularities.
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• DG methods work well for nonlinear problems containing

δ-singularities. It is however important to design and apply a

bound-preserving limiter which keeps high order accuracy and can

effectively prevent nonlinear instability caused by overshoots of the

numerical solution into the ill-posed regime of the nonlinear PDEs.
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The End

THANK YOU!
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