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Plan of the talk

Background:
@ approximation classes
@ Besov spaces

@ multilevel approximation

Ongoing work on

@ approximation classes of adaptive finite element methods



Q polyhedral Lipschitz domain in R”
Py triangulation of Q
P the family of all conforming triangulations obtained from Py

by a sequence of newest vertex bisections

the Lagrange C° finite element space of piecewise polyno-

Sp mials of degree not exceeding m, subordinate to Pe &
Xo Examples: Xy = LP(Q), Xo = H(Q)
Let
E(u, P) =min|lu-vllx,, Ej(u) = inf  E(uP),
veSp {Pe P:#P<2]}

and define the approximation class 273 (Xp) for s> 0 by

ue LX) = Ew2F = [stEj(u)]jEN€€°°.



Adaptive approximation classes

Recall

E(u, P) = min |u—-vllx,, Ej(w) = inf  E(u,P),
q veSp {Pe P:#P<2J}
an

ue dSXy) = Ewl2F = [szEj(u)] e
J
We extend this definition by introducing <7/ (Xo) for 0 < g=oo by
s S . q
ue i) = |2 E](u)]jeNeﬁ :

We have ,527;()(0) c ot (Xp) for g=r, and .dqs()ﬁ)) c ¥ (Xp) for s>a and
for any 0 < g,r<oo. In a typical situation, it is a quasi-Banach space.

We would like to compare, say, .qus(L”(Q)) with known function spaces.



Besov spaces

For best N-term approximations in a wavelet basis, we have

a 1 1
%;(LP(Q))ngq(Q), for §s=—=—-——-—>0,
n .q p
where BZ,.(Q) is a Besov space (B, ,~ W*P).
@ o For £ =1_1 \ve have B%_ (Q) c LP(Q)
Bq q n-q p 9.9 ’
Less sharp characterizations are known

for
@ nonlinear spline approximations

@ wavelet tree approximations

N @ adaptive finite element
Lr p approximations




Direct and inverse embeddings

[Binev, Dahmen, DeVore, Petrushev '02], [Gaspoz, Morin '13]

B,‘; d@c A3 (LP(Q)
@ with s= £ if
H 6:%+%—é>0
+
g B’?’q 1
and 0 < a < m+max{l, =}.
On the other hand
! AP (Q) € BL(©)
¢ for
Lv L s=a-11sg

and a<1+%7.



Main ingredients of the direct theorem

Direct estimate [BDDP02,GM13]

—a_ 1_1 1
Let 6§ = nty q>0 and 0<a<m+max{1,q}. Then for ueBgfq(Q) and

Pe P, there exists ve Sp such that
po
=il 0 S § 7| IulBa L&

where 7 is the patch of triangles that touch 7.

Proof: Quasi-interpolator, Whitney estimates, Besov-Sobolev embedding.
Mesh construction [BDDP02]

For any ue By ,(Q) and N, there exists P€ & with #P< N such that

po < NTSP
L e oy SN Pl o
- a
where s= T

Proof: Greedy algorithm to reduce e(r,P) = |T|6|M|B;q(f).



Main ingredients of the inverse theorem

Inverse estimate [BDDP02]

Let s=2=l—’—17>0 and a<1+%]. Then we have

noq

IVlge @ S #PFIVIpe), PP, veSp

Proof: Multiscale decomposition of v.

Corollary [BDDP02]

For s=%=1-2>0and a<1+ we have &/ (L"(Q)) < B,(Q).

Proof: Real interpolation.

The embedding .7 (L"(Q)) < Bg ,(©2) cannot hold for a =1+ é because in
this range we have Sp C By ,(Q).

This problem was dealt with in [GM13] by introducing generalized Besov
spaces Ay ,(Q), and showing that @7/ (LP(Q)) c A7, (Q) for all @ >0. We
call Ag’q(ﬂ) multilevel approximation spaces.



Multilevel approximation spaces

For j=1,2,..., let P; be the uniform refinement of Pj_;.

Let G Q be a domain consisting of elements from some P;.

With SjZSp]., and 0 < p<oo, we let

E(u;Sj;G)pz325€||u_v||Lp(G), ueI’(G).

Define the multilevel approximation spaces Ag,q(G) :Aqu({Sj},G) by

ue Al (5160 =  (MEw sj,G)p)jzo €09,
where 1 = V/2.
Note that ue A% (G) implies E(u, $j,G)p S27 W~ he, with h; the
typical meshwidth of P;.



Multilevel approximation spaces Il

@ We have Bf;’q(Q) cA‘Z‘M(Q) for 0<g<oo and 0 < a < m+ max{l, %7}.

@ In the other direction, we have Ag,q(Q) cBg,q(Q) for 0 < g<oo and
O<a<l+ %’.

@ So in most interesting situations, we have Bqu(Q) gAg,q(Q).

@ Gaspoz-Morin's inverse theorem says that %;(L”(Q)) cAL‘;fq(Q) for
s= % = %7 - %} > 0. Recall the inclusion JM;(U’(Q)) c Bg‘,q(Q) cannot
hold above the red line.

o Their direct theorem says that Bj,(Q) ¢ @/3,(LP(Q) for >
and 0 < a < m+max{l, %7}.

< =

1
q

@ Question |: What is the difference between Ag,q and Bg‘,q?
@ Question Il: Do we have qu(ﬂ) c @y (LP(Q)?



Multilevel approximation spaces llI

Conjecture: If uEqu({Sj},Q) for all possible initial triangulations Py of
Q, then ue ng(Q).

Lemma

Let ¢ € Sg be such that ¢§ZC1(Q) for some k. Then there exists an initial
_ — TRy

triangulation Py of Q, such that E(¢,S), 2 A U for 0 < p < oo, where

{Ej} is the sequence analogous to {S;} with Py replaced by P,.

Proof (n=2):

@ There is an edge e of Py, such that |¢(x,y)| ~ max{0, y} under
suitable transformation, where y is the coordinate normal to e.

e We choose Py so that e cuts through the “middle” of each triangle
in any refinement of Py.



Multilevel approximation spaces IV

Proof (n=2):
@ There is an edge e of Py, such that [¢p(x, )| ~ max{0,y} under a
suitable transformation, where y is the coordinate normal to e.

@ We choose Py so that e cuts through the “middle” of each triangle
in any refinement of Py.

We have
p Y pdy ~ P AT
||¢”Lp(vj) ~ o y y~ ] ~ 4

where Vj is the shaded area, and

_ el
E@,S)p 2 1 lrry ~ A ), P



Direct embeddings Il

Theorem: We have A7/ (Q) c 7 (LP(Q) for s= % > [li ~1lso.

< =

Proof: The two ingredients are the same as before.

Mesh construction
For any ueA,‘;q(Q) and N, there exists Pe€ & with #P < N such that

po P < N-SP p
LIy o SNVl o)

—a
where s= .

Proof: The same argument works basically because the spaces qu(G)
enjoy the locality property

q < q
TEZPI e @ SNulya o



Direct estimate

Lemma: Let 6=2+

11
57 > 0. Then for uEA,‘;q(Q) and Pe & we have

po
”u QPu”Lp(Q) < Z |T| |u|Aa (T)'

where Qp is the quasi-interpolation operator from [GM13].

Proof (g=<1): We have

lu=Qpull}yq, = leu qullm,)<sz lee= vl -

Every triangle o € P belongs to a unique P;. Given 7 € P denote by j(7)
the highest index j that occurs in the local patch surrounding 7. We have

1nf lu— V||LV(T)< inf lu-vlpm),
Sj(t)

because in £, Pj) is more refined that P.



Proof of direct estimate continued

So far, we have

lu— QPu”Lp(Q) S Z Ulnf) lu— V"Lp(‘[)
S

For each j, let uj€ S; be such that [[u—u;jllpi) = inbf lu—vllpz). We have
4SS J]

(4-Lyjn
hu=tjer 1, = Z lujor =il ) S Z AP g i oy
J=i@ J=i@

with p* =min{l, p}. Putting %,— ’l? =% -4, we get

—jnép*
llu— Uj(r) ||Lp(‘[)r'\./ Z ATInOP" pJap” lu— u]”
Jj=j@)

) op* *
< A~ J@nép* Z Afart lu— u]”mm <|t|°P |U|Zu )
J=i@ pp

L4(%)



Adaptive finite element methods

Consider the boundary value problem
Au=f in Q, u=0 on 0Q.
A typical a posteriori error estimate satisfies

2
[0, D]~ lu=uplyp o+ 3 B2If =Tefl 7, ),
TEP
where up € Sp is the Galerkin solution on P, and Il : I*(t) — Py is the
LZ(T)—orthogonaI projection onto P;, d=m-2.

It is known that certain practical adaptive FEM converges optimally
w.r.t. approximation classes associated to

D=

Eu)P = |min u—y2 + h2 -1 2



Generalized approximation classes

1

2
Let pu,v,P) = (nu— Vi + ;Phi ||f—HTf||§2m) :
T
and define
E(u,P) =minp(u,v,P), Ej(w) = inf  E(u,P).
veSp {Pe P:#P<2]}

We introduce the approximation class @/qs(p) given by
s JSE. q
Ue qu(p) — [2 E](u)]j€N€€ .
Also, define the oscillation class &° by

€05 = inf R2\f T, f112,, . <2728,
Teq {Peﬁzz#Pszf}T;p I =Wz

Lemma: If ue &% (Hy(Q) and fe O° then ue 3 (p).

Proof: Overlay of meshes.
Example:
H*(Q) < 0% for a =20, so 3 (Hy () NA™HH1(Q)) € 5 (p) for s=1.



Direct embeddings Ill

Morally, 0° = o73,(H™'(Q)), so we expect By, (Q) c 6'**.

Theorem: We have Bf,(Q) c O for L1
hence 273, (Hy () N A~ (B} | () € o/ (p) for =

Q
IH e

Qh—*
NI=

e
(0%
Bq7q /
b e




Direct embeddings Ill

Theorem: We have B, (@) «c O for
hence 73 (Hy () N AN (B 1 (Q) € /3 (p

Proof: The mesh construction part works the same as before. For the
direct estimate, with 6 = % - %7 + % >0, we have

If =Tefll2y = If = PIILZ(T)<|T| If- P||L4(1)+|T| Ilea oL
for any pe P, and
min||f - <w e S ,
min If = pllzaw S 0an1(f,1)g S If 182,

which gives

Z h% "f_HTf”Lz(T) ~ Z Iz |26+2/n|f|8“ PION

T€P



Concluding remarks

The arguments can be adapted to
@ red refinements,
splines,

°
@ higher order problems,
@ Stokes equations, etc.
(]

Variable coefficients.

Plans:
@ inverse theorems for adaptive FEM
@ boundary elements

@ finite element exterior calculus



