
On approximation classes of adaptive methods

Gantumur Tsogtgerel
McGill University

LMS–EPSRC Durham Symposium
Durham

Wednesday July 9, 2014



Plan of the talk

Background:
approximation classes
Besov spaces
multilevel approximation

Ongoing work on
approximation classes of adaptive finite element methods



Basic setup

Ω polyhedral Lipschitz domain in Rn

P0 triangulation of Ω

P
the family of all conforming triangulations obtained from P0

by a sequence of newest vertex bisections

SP
the Lagrange C0 finite element space of piecewise polyno-
mials of degree not exceeding m, subordinate to P ∈P

X0 Examples: X0 = Lp(Ω), X0 = H1(Ω)

Let
E(u,P) = min

v∈SP
‖u−v‖X0 , Ej(u) = inf

{P∈P :#P≤2j}
E(u,P),

and define the approximation class A s∞(X0) for s > 0 by

u ∈A s
∞(X0) ⇐⇒ Ej(u). 2−js ⇐⇒

[
2jsEj(u)

]
j∈N ∈ `∞.



Adaptive approximation classes

Recall
E(u,P) = min

v∈SP
‖u−v‖X0 , Ej(u) = inf

{P∈P :#P≤2j}
E(u,P),

and

u ∈A s
∞(X0) ⇐⇒ Ej(u). 2−js ⇐⇒

[
2jsEj(u)

]
j∈N ∈ `∞.

We extend this definition by introducing A s
q (X0) for 0 < q ≤∞ by

u ∈A s
q (X0) ⇐⇒

[
2jsEj(u)

]
j∈N ∈ `q.

We have A s
q (X0) ⊂A s

r (X0) for q ≤ r, and A s
q (X0) ⊂A α

r (X0) for s >α and
for any 0 < q,r ≤∞. In a typical situation, it is a quasi-Banach space.

We would like to compare, say, A s
q (Lp(Ω)) with known function spaces.



Besov spaces

For best N-term approximations in a wavelet basis, we have

A s
q (Lp(Ω)) = Bα

q,q(Ω), for s = α

n
= 1

q
− 1

p
> 0,

where Bα
q,r(Ω) is a Besov space (Bs

p,p ≈ W s,p).

1
q

α

Lp

Bα
q,q

For α
n = 1

q − 1
p we have Bα

q,q(Ω) ⊂ Lp(Ω).

Less sharp characterizations are known
for

nonlinear spline approximations
wavelet tree approximations
adaptive finite element
approximations



Direct and inverse embeddings

[Binev, Dahmen, DeVore, Petrushev ’02], [Gaspoz, Morin ’13]

1
q

α

Lp

m
+
1

1

Bαq,q

Bα
q,q(Ω) ⊂A s

∞(Lp(Ω))

with s = α
n , if

δ= α
n + 1

p − 1
q > 0

and 0 <α< m+max{1, 1
q }.

On the other hand

A s
q (Lp(Ω)) ⊂ Bα

q,q(Ω)

for
s = α

n = 1
q − 1

p > 0,

and α< 1+ 1
q .



Main ingredients of the direct theorem

Direct estimate [BDDP02,GM13]
Let δ= α

n + 1
p − 1

q > 0 and 0 <α< m+max{1, 1
q }. Then for u ∈ Bα

q,q(Ω) and
P ∈P, there exists v ∈ SP such that

‖u−v‖p
Lp(Ω) .

∑
τ∈P

|τ|pδ|u|p
Bα

q,q(τ̂)
,

where τ̂ is the patch of triangles that touch τ.

Proof: Quasi-interpolator, Whitney estimates, Besov-Sobolev embedding.

Mesh construction [BDDP02]
For any u ∈ Bα

q,q(Ω) and N , there exists P ∈P with #P ≤ N such that∑
τ∈P

|τ|pδ|u|p
Bα

q,q(τ̂)
.N−sp‖u‖p

Bα
q,q(Ω)

,

where s = α
n .

Proof: Greedy algorithm to reduce e(τ,P) = |τ|δ|u|Bα
q,q(τ̂).



Main ingredients of the inverse theorem

Inverse estimate [BDDP02]
Let s = α

n = 1
q − 1

p > 0 and α< 1+ 1
q . Then we have

‖v‖Bαq,q(Ω) . (#P)s‖v‖Lp(Ω), P ∈P , v ∈ SP.

Proof: Multiscale decomposition of v.

Corollary [BDDP02]
For s = α

n = 1
q − 1

p > 0 and α< 1+ 1
q we have A s

q (Lp(Ω)) ⊂ Bα
q,q(Ω).

Proof: Real interpolation.

The embedding A s
q (Lp(Ω)) ⊂ Bα

q,q(Ω) cannot hold for α≥ 1+ 1
q because in

this range we have SP (Bα
q,q(Ω).

This problem was dealt with in [GM13] by introducing generalized Besov
spaces Aα

q,q(Ω), and showing that A s
q (Lp(Ω)) ⊂ Aα

q,q(Ω) for all α> 0. We
call Aα

q,q(Ω) multilevel approximation spaces.



Multilevel approximation spaces

For j = 1,2, . . ., let Pj be the uniform refinement of Pj−1.
Let G ⊂Ω be a domain consisting of elements from some Pj.
With Sj = SPj , and 0 < p <∞, we let

E(u,Sj,G)p = inf
v∈Sj

‖u−v‖Lp(G), u ∈ Lp(G).

Define the multilevel approximation spaces Aαp,q(G) = Aαp,q({Sj},G) by

u ∈ Aαp,q({Sj},G) ⇐⇒
(
λjαE(u,Sj,G)p

)
j≥0

∈ `q,

where λ= np2.
Note that u ∈ Aαp,q(G) implies E(u,Sj,G)p . 2−αj/n ∼ hαj , with hj the
typical meshwidth of Pj.



Multilevel approximation spaces II

We have Bαq,q(Ω) ⊂ Aαq,q(Ω) for 0 < q <∞ and 0 <α< m+max{1, 1
q }.

In the other direction, we have Aαq,q(Ω) ⊂ Bαq,q(Ω) for 0 < q <∞ and
0 <α< 1+ 1

q .
So in most interesting situations, we have Bαq,q(Ω)(Aαq,q(Ω).
Gaspoz-Morin’s inverse theorem says that A s

q (Lp(Ω)) ⊂ Aα
q,q(Ω) for

s = α
n = 1

q − 1
p > 0. Recall the inclusion A s

q (Lp(Ω)) ⊂ Bα
q,q(Ω) cannot

hold above the red line.
Their direct theorem says that Bα

q,q(Ω) ⊂A s∞(Lp(Ω)) for α
n > 1

q − 1
p

and 0 <α< m+max{1, 1
q }.

Question I: What is the difference between Aα
q,q and Bα

q,q?
Question II: Do we have Aα

q,q(Ω) ⊂A s∞(Lp(Ω))?



Multilevel approximation spaces III

Conjecture: If u ∈ Aα
p,q({Sj},Ω) for all possible initial triangulations P0 of

Ω, then u ∈ Bα
p,q(Ω).

Lemma
Let φ ∈ Sk be such that φ 6∈ C1(Ω) for some k. Then there exists an initial
triangulation P0 of Ω, such that E(φ,Sj)p &λ

−(1+ 1
p )j for 0 < p <∞, where

{Sj} is the sequence analogous to {Sj} with P0 replaced by P0.

Proof (n = 2):
There is an edge e of Pk, such that |φ(x,y)| ∼ max{0,y} under
suitable transformation, where y is the coordinate normal to e.
We choose P0 so that e cuts through the “middle” of each triangle
in any refinement of P0.



Multilevel approximation spaces IV

Proof (n = 2):
There is an edge e of Pk, such that |φ(x,y)| ∼ max{0,y} under a
suitable transformation, where y is the coordinate normal to e.
We choose P0 so that e cuts through the “middle” of each triangle
in any refinement of P0.

e

We have

‖φ‖p
Lp(Vj) ∼

∫ hj

0
ypdy ∼ hp+1

j ∼λ−j(p+1),

where Vj is the shaded area, and

E(φ,Sj)p & ‖φ‖Lp(Vj) ∼λ−j(1+ 1
p ).

e



Direct embeddings II

Theorem: We have Aα
q,q(Ω) ⊂A s∞(Lp(Ω)) for s = α

n > 1
q − 1

p ≥ 0.

Proof: The two ingredients are the same as before.

Mesh construction
For any u ∈ Aα

q,q(Ω) and N , there exists P ∈P with #P ≤ N such that∑
τ∈P

|τ|pδ|u|p
Aα

q,q(τ̂)
.N−sp‖u‖p

Aα
q,q(Ω)

,

where s = α
n .

Proof: The same argument works basically because the spaces Aα
q,q(G)

enjoy the locality property∑
τ∈P

|u|q
Aα

q,q(τ̂)
. ‖u‖q

Aα
q,q(Ω)

.



Direct estimate

Lemma: Let δ= α
n + 1

p − 1
q > 0. Then for u ∈ Aα

q,q(Ω) and P ∈P we have

‖u−QPu‖p
Lp(Ω) .

∑
τ∈P

|τ|pδ|u|p
Aα

q,q(τ̂)
,

where QP is the quasi-interpolation operator from [GM13].

Proof (q ≤ 1): We have

‖u−QPu‖p
Lp(Ω) =

∑
τ∈P

‖u−QPu‖p
Lp(τ) .

∑
τ∈P

inf
v∈SP

‖u−v‖p
Lp(τ̂).

Every triangle σ ∈ P belongs to a unique Pj. Given τ ∈ P denote by j(τ)
the highest index j that occurs in the local patch surrounding τ. We have

inf
v∈SP

‖u−v‖Lp(τ̂) ≤ inf
v∈Sj(τ)

‖u−v‖Lp(τ̂),

because in τ̂, Pj(τ) is more refined that P.



Proof of direct estimate continued

So far, we have

‖u−QPu‖p
Lp(Ω) .

∑
τ∈P

inf
v∈Sj(τ)

‖u−v‖p
Lp(τ̂).

For each j, let uj ∈ Sj be such that ‖u−uj‖Lp(τ̂) = inf
v∈Sj

‖u−v‖Lp(τ̂). We have

‖u−uj(τ)‖p∗
Lp(τ̂) ≤

∞∑
j=j(τ)

‖uj+1 −uj‖p∗
Lp(τ̂) .

∞∑
j=j(τ)

λ
( 1

q − 1
p )jnp∗‖uj+1 −uj‖p∗

Lq(τ̂),

with p∗ = min{1,p}. Putting 1
q − 1

p = α
n −δ, we get

‖u−uj(τ)‖p∗
Lp(τ̂) .

∞∑
j=j(τ)

λ−jnδp∗
λjαp∗‖u−uj‖p∗

Lq(τ̂)

≤λ−j(τ)nδp∗ ∞∑
j=j(τ)

λjαp∗‖u−uj‖p∗
Lq(τ̂) . |τ|δp∗ |u|p∗

Aα
p,p∗

.



Adaptive finite element methods

Consider the boundary value problem

∆u = f in Ω, u = 0 on ∂Ω.

A typical a posteriori error estimate satisfies[
η(u,P)

]2 ∼ ‖u−uP‖2
H1(Ω) +

∑
τ∈P

h2
τ‖f −Πτf ‖2

L2(τ),

where uP ∈ SP is the Galerkin solution on P, and Πτ : L2(τ) →Pd is the
L2(τ)-orthogonal projection onto Pd, d ≥ m−2.

It is known that certain practical adaptive FEM converges optimally
w.r.t. approximation classes associated to

E(u,P) =
(
min
v∈SP

‖u−v‖2
H1(Ω) +

∑
τ∈P

h2
τ‖f −Πτf ‖2

L2(τ)

) 1
2

.



Generalized approximation classes

Let ρ(u,v,P) =
(
‖u−v‖2

H1(Ω) +
∑
τ∈P

h2
τ‖f −Πτf ‖2

L2(τ)

) 1
2

,

and define
E(u,P) = min

v∈SP
ρ(u,v,P), Ej(u) = inf

{P∈P :#P≤2j}
E(u,P).

We introduce the approximation class A s
q (ρ) given by

u ∈A s
q (ρ) ⇐⇒

[
2jsEj(u)

]
j∈N ∈ `q.

Also, define the oscillation class Os by

f ∈Os
q ⇐⇒ inf

{P∈P :#P≤2j}

∑
τ∈P

h2
τ‖f −Πτf ‖2

L2(τ) . 2−2js.

Lemma: If u ∈A s∞(H1
0 (Ω)) and f ∈Os then u ∈A s∞(ρ).

Proof: Overlay of meshes.
Example:
Hα(Ω) ⊂O1+α for α≥ 0, so A s∞(H1

0 (Ω))∩∆−1(Hs−1(Ω)) ⊂A s∞(ρ) for s ≥ 1.



Direct embeddings III

Morally, Os ≈A s∞(H−1(Ω)), so we expect Bα
q,q(Ω) ⊂O1+α.

Theorem: We have Bα
q,q(Ω) ⊂O1+α for α

n ≥ 1
q − 1

2 ,
hence A s∞(H1

0 (Ω))∩∆−1(Bs−1
q,q (Ω)) ⊂A s∞(ρ) for s−1

n ≥ 1
q − 1

2 .

1
q

α

L2

H−1

Bα
q,q



Direct embeddings III

Theorem: We have Bα
q,q(Ω) ⊂O1+α for α

n ≥ 1
q − 1

2 ,
hence A s∞(H1

0 (Ω))∩∆−1(Bs−1
q,q (Ω)) ⊂A s∞(ρ) for s−1

n ≥ 1
q − 1

2 .

Proof: The mesh construction part works the same as before. For the
direct estimate, with δ= α

n − 1
q + 1

2 ≥ 0, we have

‖f −Πτf ‖L2(τ) ≤ ‖f −p‖L2(τ) . |τ|δ‖f −p‖Lq(τ) +|τ|δ|f |Bα
q,q(τ),

for any p ∈Pd, and

min
p∈Pd

‖f −p‖Lq(τ) .ωd+1(f ,τ)q . |f |Bα
q,q(τ),

which gives ∑
τ∈P

h2
τ‖f −Πτf ‖2

L2(τ) .
∑
τ∈P

|τ|2δ+2/n|f |2Bα
q,q(τ).



Concluding remarks

The arguments can be adapted to
red refinements,
splines,
higher order problems,
Stokes equations, etc.
Variable coefficients.

Plans:
inverse theorems for adaptive FEM
boundary elements
finite element exterior calculus


