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What is Diophantine approximation?

Diophantine approximation is a branch of number theory that
can loosely be described as a quantitative analysis of the property
the rationals Q are dense in R; i.e.

For any x ∈ R and ε > 0 there exists a rational p/q (q > 0)
such that

|x − p/q| < ε .

UPSHOT: any x ∈ R can be approximated by a rational with any
assigned degree of accuracy. But how rapidly can we approximate
to x? More precisely

Given x ∈ R and q ∈ N, how small can we make ε? Trivially
we can take ε = 1/q.

In the case of π = 3.142..., the following rationals all lie within
1/(denominator)2 of π:

3
1 ,

22
7 ,

333
106 ,

355
113 ,

103993
33102 .
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What is Diophantine approximation?

For any x ∈ R and ε > 0 there exists a rational p/q (q > 0)
such that

|x − p/q| < ε .

Given x ∈ R and q ∈ N, how small can we make ε?

The answer is given by Dirchlet’s fundamental theorem from 1848
– a simple consequence of the powerful Pigeon Hole Principle:

If n objects are placed in m boxes and n > m, then some box
will contain at least two objects.



What is Diophantine approximation?

For any x ∈ R and ε > 0 there exists a rational p/q (q > 0)
such that

|x − p/q| < ε .

Given x ∈ R and q ∈ N, how small can we make ε?

The answer is given by Dirchlet’s fundamental theorem from 1848
– a simple consequence of the powerful Pigeon Hole Principle:

If n objects are placed in m boxes and n > m, then some box
will contain at least two objects.



Dirichlet’s Theorem

Theorem (1848) For any x ∈ R and integer N ≥ 1, there exists a
rational p/q such that

|x − p/q| ≤ 1/qN and 1 ≤ q ≤ N .

Dirichlet’s Theorem

For any x ∈ R, there exist infinitely many integers p, q > 0 such
that

|x − p/q| ≤ 1/q2.

The theory of continued fraction provides a simple mechanism for
finding these good ‘Dirichlet’ rational approximates.
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Continued Fractions: finding the Dirichlet rationals

From now on assume that x ∈ I := [0, 1].

Suppose x = [a1, a2, a3, . . .] is irrational and consider it’s n-th
convergent:

pn

qn
:= [a1, a2, a3, . . . , an] .

Then
1

(an+1 + 2)q2
n

≤
∣∣∣x − pn

qn

∣∣∣ ≤ 1

an+1q2
n

.

UPSHOT: the convergents provide explicit solutions to Dirichlet.

Regarding π = 3.142... the rationals

3
1 ,

22
7 ,

333
106 ,

355
113 ,

103993
33102

are the first 5 convergents of π. Thus, for sure

|π − 103993
33102 | ≤ (33102)−2 < 9.1× 10−10 .
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Dirichlet and Bad

For x ∈ R, let ‖x‖ := min{|x −m| : m ∈ Z}. Recall I := [0, 1].

Dirichlet’s Theorem For any x ∈ I, there exist infinitely many
integers q > 0 such that

q ‖qx‖ ≤ 1 . (1)

Question. Can we replace r.h.s. of (1) by arbitrary ε > 0? In
other words, for any x is it true that lim infq→∞ q‖qx‖ = 0 ?

No. q ‖qx‖ ≤ ε = 1/
√

5 is best possible (Hurwitz (1891))

UPSHOT: there exist numbers for which we can not improve
Dirichlet by arbitrary ε > 0 – badly approximable numbers

Bad := {x ∈ R : ∃c(x) > 0 s.t. q ‖qx‖ > c(x) ∀ q ∈ N} .
i.e. x ∈ Bad if lim infq→∞ q‖qx‖ > 0.

Bad has a lovely characterization via continued fractions
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Bad

Bad := {x ∈ R : lim inf
q→∞

q‖qx‖ > 0} .

Let x = [a1, a2, a3, . . .] be irrational. Then

x ∈ Bad ⇐⇒ ∃ M = M(x) such that ai ≤ M ∀i

quadratic irrationals are in Bad

Folklore Conjecture: Cubic irrationals are not in Bad

Marshall Hall: Bad4 + Bad4 = R
Zaremba Conjecture (1971) on expansion of rationals p/q

Regarding the ‘size’ of Bad:

m(Bad) = 0 – Lebesgue measure zero (Khintchine (1924))

dim Bad = 1 – full dimension (Jarnik (1928))

Measure theoretically we can improve on Dirichlet by a log factor.
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Khintchine’s Theorem

Let ψ : R+ → R+ be a real positive function and let

W (ψ) := {x ∈ I : ‖qx‖ ≤ ψ(q) for infinitely many q ∈ N}

Khintchine’s Theorem (1924) If ψ is monotonic, then

m(W (ψ)) =


0 if

∑∞
q=1 ψ(q) <∞ ,

1 if
∑∞

q=1 ψ(q) =∞ .

Convergence part easy – Borel-Cantelli Lemma

Divergence part hard – requires independence

• Put ψ(q) = 1
q log q . Divergent part implies that for almost all x

there exist infinitely many q > 0 such that q ‖qx‖ ≤ 1/ log q.

• Removing monotonicity from Khintchine is a key open problem
in metric number theory – the Duffin-Schaeffer Conjecture (1941).
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The Duffin-Schaeffer Conjecture

Duffin & Schaeffer constructed a non-monotonic ψ such that∑∞
q=1ψ(q) =∞ but m(W (ψ)) = 0.

Idea is to keep using the same rational; i.e. p/q, 2p/2q, ....

Overcome this by insisting that p, q are co-prime: let W ′(ψ) be
the set of x ∈ I such that |qx − p| ≤ ψ(q) for infinitely many
p/q with (p, q) = 1.

The Duffin-Schaeffer Conjecture (1941) Let ψ : R+ → R+ be
a real positive function. Then

m(W ′(ψ)) = 1 if
∑∞

q=1
ϕ(q)φ(q)

q =∞ .

True with extra divergence (Beresnevich-Harman-Haynes-V, 2013):∑∞
q=16

ϕ(q)ψ(q)
q exp(c(log log q)(log log log q)) = ∞ .
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a real positive function. Then

m(W ′(ψ)) = 1 if
∑∞

q=1
ϕ(q)φ(q)

q =∞ .

True with extra divergence (Beresnevich-Harman-Haynes-V, 2013):∑∞
q=16

ϕ(q)ψ(q)
q exp(c(log log q)(log log log q)) = ∞ .
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Littlewood’s Conjecture

Dirichlet =⇒ For every (α, β) ∈ I2 := [0, 1] there exist infintely
many q > 0 such that q‖qα‖‖qβ‖ ≤ 1.

• Littlewood Conjecture (c. 1930): For every (α, β) ∈ I2

lim inf
q→∞

q‖qα‖‖qβ‖ = 0.

Equivalently, ∃ infinitely many (s/q, t/q) such that∣∣∣α− s

q

∣∣∣ ∣∣∣β − t

q

∣∣∣ < ε

q3
(ε > 0 arbitrary)

“ every point in the plane lies in infinitely many hyperbolic regions
given by |x | · |y | < ε/q3 centred at rational points”
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Littlewood’s Conjecture: metric results

Gallagher’s Theorem (1961) Let ψ : R+ → R+ be a real positive
monotonic function. Then for almost all (α, β) ∈ I2 there exist
infintely many q > 0 such that

‖qα‖‖qβ‖ ≤ ψ(q) if
∑∞

q=1 ψ(q) log q =∞ .

Gallagher =⇒ For almost all (α, β) ∈ I2:

lim inf
q→∞

q(log q)2‖qα‖‖qβ‖ = 0 .

Beresnevich, Haynes, Vaaler + V (201?) Gallagher true for all
α and almost all β.

UPSHOT: Regarding Littlewood we have log2 to play with!

Claim: For every (α, β) ∈ I2:

lim inf
q→∞

q log q ‖qα‖ ‖qβ‖ <∞.
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Where in the UK?

The Duffin-Schaeffer Conjecture and Littlewood’s Conjecture
form two of the three major research challenges of the 1.6M
EPSRC Programme Grant “New frameworks in metric
Number Theory: foundations and application” awarded to
Beresnevich and SV at York.

The group at York working on Diophantine approximation and
related areas consists of

5 permanent staff
7 post-docs
4 PhD students

Other UK universities: Bristol, Durham, Liverpool, Oxford,
Royal Holloway.
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