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@ For any x € R and € > 0 there exists a rational p/q (¢ > 0)
such that

Ix—p/q| <e.

@ Given x € R and g € N, how small can we make €?

The answer is given by Dirchlet's fundamental theorem from 1848
— a simple consequence of the powerful Pigeon Hole Principle:

If n objects are placed in m boxes and n > m, then some box
will contain at least two objects.
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Dirichlet's Theorem

Theorem (1848) For any x € R and integer N > 1, there exists a
rational p/q such that

Ix —p/q| <1/gN and 1<qg<N.

Dirichlet’s Theorem
For any x € R, there exist infinitely many integers p,q > 0 such

that ”
Ix—p/al <1/q".

The theory of continued fraction provides a simple mechanism for
finding these good ‘Dirichlet’ rational approximates.
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Continued Fractions: finding the Dirichlet rationals

From now on assume that x € I := [0, 1].

Suppose x = [a1, a2, a3, . . .] is irrational and consider it's n-th
convergent:

Pn

— = [31,32,33,...,3,,].

n
Then 1 1

7 S ‘ - 2"
(an+1 +2)q3 dn an+14n

UPSHOT: the convergents provide explicit solutions to Dirichlet.

Regarding m = 3.142... the rationals

3 22 333 355 103993
1> 7 106> 113’ 33102

are the first 5 convergents of w. Thus, for sure

|m— 13993 < (33102)72 < 9.1 x 10710,




Dirichlet and Bad

For x € R, let ||x|| :== min{|x — m| : m € Z}. Recall 1:= [0, 1].

Dirichlet’s Theorem For any x € 1, there exist infinitely many
integers q > 0 such that
qllgx|| <1. (1)



Dirichlet and Bad

For x € R, let ||x|| :== min{|x — m| : m € Z}. Recall 1:= [0, 1].

Dirichlet’s Theorem For any x € 1, there exist infinitely many

integers q > 0 such that
qllax|| < 1. (1)

Question. Can we replace r.h.s. of (1) by arbitrary € > 07 In
other words, for any x is it true that liminfq_,o q|lgx|| =0 7?



Dirichlet and Bad

For x € R, let ||x|| :== min{|x — m| : m € Z}. Recall 1:= [0, 1].

Dirichlet’s Theorem For any x € 1, there exist infinitely many
integers q > 0 such that
qllgx|| <1. (1)

Question. Can we replace r.h.s. of (1) by arbitrary € > 07 In
other words, for any x is it true that liminfq_,o q|lgx|| =0 7?

No. q|gx|| < e=1/v5 is best possible (Hurwitz (1891))



Dirichlet and Bad

For x € R, let ||x|| :== min{|x — m| : m € Z}. Recall 1:= [0, 1].

Dirichlet’s Theorem For any x € 1, there exist infinitely many
integers q > 0 such that
qllgx|| <1. (1)

Question. Can we replace r.h.s. of (1) by arbitrary € > 07 In
other words, for any x is it true that liminfq_,o q|lgx|| =0 7?

No. q|gx|| < e=1/v5 is best possible (Hurwitz (1891))

UPSHOT: there exist numbers for which we can not improve
Dirichlet by arbitrary ¢ > 0 — badly approximable numbers

Bad := {x € R: J¢(x) >0 s.t. gllgx|| > c(x) V qgeN}.
i.e. x € Bad if liminfy,_o q|/gx|| > 0.



Dirichlet and Bad

For x € R, let ||x|| :== min{|x — m| : m € Z}. Recall 1:= [0, 1].

Dirichlet’s Theorem For any x € 1, there exist infinitely many
integers q > 0 such that
qllgx|| <1. (1)

Question. Can we replace r.h.s. of (1) by arbitrary € > 07 In
other words, for any x is it true that liminfq_,o q|lgx|| =0 7?

No. q|gx|| < e=1/v5 is best possible (Hurwitz (1891))

UPSHOT: there exist numbers for which we can not improve
Dirichlet by arbitrary ¢ > 0 — badly approximable numbers

Bad := {x € R: J¢(x) >0 s.t. gllgx|| > c(x) V qgeN}.
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Bad has a lovely characterization via continued fractions
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g—00

Let x = [a1, a2, a3, . . .| be irrational. Then

x € Bad <= 3 M = M(x) such that a; < M Vi

@ quadratic irrationals are in Bad
@ Folklore Conjecture: Cubic irrationals are not in Bad
@ Marshall Hall: Bads + Bad; = R
e Zaremba Conjecture (1971) on expansion of rationals p/q
Regarding the 'size’ of Bad:
e m(Bad) = 0 — Lebesgue measure zero (Khintchine (1924))
e dimBad =1 — full dimension (Jarnik (1928))

Measure theoretically we can improve on Dirichlet by a log factor:
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Let ¢ : R™ — R™ be a real positive function and let
W(y) :={x €1:|gx|| <(q) for infinitely many q € N}
Khintchine’s Theorem (1924) If ¢ is monotonic, then

0 if Y, w(q) <oo.
m(W(1)) =
1if Y5, w(q) = oo

@ Convergence part easy — Borel-Cantelli Lemma
@ Divergence part hard — requires independence

e Put ¥(q) = qlolgq. Divergent part implies that for almost all x

there exist infinitely many g > 0 such that g ||gx|| < 1/loggq.

e Removing monotonicity from Khintchine is a key open problem
in metric number theory — the Duffin-Schaeffer Conjecture (1941).
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Duffin & Schaeffer constructed a non-monotonic v such that
2_q=1%(q) = o0 but m(W(¢)) = 0.

Idea is to keep using the same rational; i.e. p/q, 2p/2q, ....
Overcome this by insisting that p, g are co-prime: let W’(v) be
the set of x € I such that |gx — p| < ¢(q) for infinitely many
p/q with (p,q) = 1.

The Duffin-Schaeffer Conjecture (1941) Let ¢ : Rt — R™ be
a real positive function. Then

m(W/(T,Z))) -1 Jif 230:1 LF’(Cl)qqs(‘?l) = 00.

True with extra divergence (Beresnevich-Harman-Haynes-V, 2013):

= .

yoo ©(q)¥(q)
q=16 qexp(c(loglog q)(logloglog q))
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Dirichlet = For every (o, 3) € I? := [0, 1] there exist infintely
many g > 0 such that ql|q«||||g8]| < 1.

e Littlewood Conjecture (c. 1930): For every (a, 3) € 12
im inf qllaella8]) = 0.
g—00

Equivalently, 3 infinitely many (s/q, t/q) such that

t
‘a—fHﬁ**‘ < % (e > 0 arbitrary)
q q q

“ every point in the plane lies in infinitely many hyperbolic regions
given by |x| - |y| < €/q> centred at rational points”
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Littlewood's Conjecture: metric results

Gallagher's Theorem (1961) Let ¢ : RT™ — R™ be a real positive
monotonic function. Then for almost all (v, B) € 12 there exist
infintely many q > 0 such that

lgallllgBll < (q) if 32521 (q)logg = oco.

Gallagher = For almost all (o, 3) € I2:
lim inf g(log q)°|qallg5]| = 0.

Beresnevich, Haynes, Vaaler + V (201?) Gallagher true for all
o and almost all 5.

UPSHOT: Regarding Littlewood we have log? to play with!
Claim: For every (a, B) € I?:

liminf g log q[[go|| [|gB]| < oo.

q—o0
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@ Other UK universities: Bristol, Durham, Liverpool, Oxford,
Royal Holloway.



