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The parabolic Anderson model
The parabolic Anderson model is the continuous-time branching
random walk on Zd defined by:

1. Initialisation:

(a) Initial state: A single particle at the origin;

(b) Random environment: A random field on Zd

ξ := {ξ(z)}z∈Zd

consisting of i.i.d. strictly-positive RVs known as the random
potential field.

2. Dynamics:

(a) CTSRW: All particles undertake independent continuous-time
simple random walks on Zd ;

(b) Branching: A particle at size z branches at rate ξ(z).
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We are interested in the mass function of the model:

u(t, z) := ERW [“# of particles at site z at time t”]

where ERW denotes that the expectation is taken over realisations
of the branching random walk in the fixed random environment.

Clearly, u(t, z) is a random variable depending on the particular
realisation of ξ. In the language of statistical mechanics, this is the
quenched (as opposed to the annealed) mass function.

Since we’re taking an expectation, we can simplify things by
weighting the trajectories of a single CTSRW:

u(t, z) = ERW

[
exp

{∫ t

0
ξ(Xs) ds

}
1{Xt = z}

]
where {Xt}t≥0 is a continuous-time simple random walk on Zd .
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PDE formulation

Via the Feynman-Kac formula, we can alternatively consider
u(t, z) as the the solution of the following Cauchy problem:

∂u(t, z)

∂t = (∆ + ξ)u(t, z) u(0, z) = 1{0}(z)

where ∆ is the Laplacian on Zd and 1{0} is the indicator function
of the origin.

Under mild moment conditions on ξ(·), a unique solution u(t, z)
exists almost surely [Gärtner and Molchanov, 1990].
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Link to quantum physics

The PAM has its origins in the statistical physics literature, where
it was introduced by P.W. Anderson in the 1960s to model the
behaviour of electrons inside a semiconductor.

Recall the time-independent Schrödinger equation

i~∂u(t, z)

∂t =

(
−~2

2m ∆ + ξ

)
u(t, z) .

We call the operator ∆ + ξ a random Schrödinger operator.
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The Bouchaud trap model
The Bouchaud trap model is the CTRW on Zd defined by:

1. Initialisation:

(a) Initial state: A single particle at the origin;

(b) Random environment: A random field on Zd

σ := {σ(z)}z∈Zd

consisting of i.i.d. strictly-positive RVs known as the random
trapping landscape.

2. Dynamics: The particle undertakes a CTRW on Zd with
jump rates

τ(z → y) :=


1

2d
1

σ(z) if y ∼ z
0 else

.
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Mass function

We are interested in the mass function of the model:

u(t, z) := PRW [“the particle is at site z at time t”]

where PRW denotes the probability with respect to the random
walk in the fixed random environment.

As in the PAM, there is a PDE formulation for u(t, z):

∂u(t, z)

∂t = ∆σ−1u(t, z) u(0, z) = 1{0}(z) .

The BTM also has its origins in the statistical physics literature,
where it introduced by Bouchaud in the 90s as a toy model for the
long-term behaviour of spin-glasses.
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Intermittency and localisation

The PAM and the BTM are said to localise if, as t →∞, their
mass functions are concentrated on a small number of sites with
overwhelming probability.

More precisely, we say that the PAM and the BTM localises if there
exists a (random) localisation set Γt such that |Γt | = to(1) and∑

z∈Γt u(t, z)

U(t)
→ 1 in probability (1)

where U(t) :=
∑

z∈Zd u(t, z) is the total mass of the process.

We describe the localisation as complete if |Γt | can be chosen in
equation (1) such that |Γt | = 1.

Almost sure localisation is the stronger statement where the
convergence in equation (1) is almost sure.
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Localisation strength

Broadly speaking, the strength of localisation in the PAM and
BTM depends on:

1. the asymptotic rate of decay; and

2. the regularity,

of the upper tail of the random field distributions ξ(·) and σ(·).

It is convenient to characterise ξ(·) and σ(·) by their exponential
tail decay rate functions

fξ(x) := − log(P(ξ(·) > x)) and fσ(x) := − log(P(σ(·) > x)) .

For simplicity, we will assume maximum regularity for the tails.
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Localisation strength

We call the connected components of the localisation set Γt the
localisation islands.

It is natural to characterise the strength of localisation by studying
Γt along two dimensions:

1. The number of localisation islands ;

2. The size of each island.

10 / 25



Localisation in the PAM: Known results

There appears to be three distinct regimes of localisation
(conjectured results in brackets):

Tail decay log fξ(x) No. loc. isl. Size loc. isl.
(1) (Almost)-bounded � x (Growing?) Growing
(2) Double-exponential ∼ c x (Bounded?) Bounded
(3) Sub-double exp. � x (Single) Single
Stretched.-D.E. β < 1 xβ (Single) Single
Weibull γ ≥ 2 γ log x (Single) Single

γ < 2 γ log x Single Single
Pareto log log x Single Single

Results on the size of the islands is due to [Gärtner, König and
Molchanov, 2007]. The Pareto case was done in [van der Hofstad,
Mörters and Sidorova, 2008]. The sub-normal Weibull case
(γ < 2) was done in [Sidorova and Twarowski, 2012].
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Our results

Theorem
Suppose fξ(x) = xγ for any γ > 0. Then the PAM exhibits
complete localisation.

We describe the localisation site explicitly, and prove a number of
related results, including:

1. That the renormalised solution decays exponentially away
from the localisation site;

2. A limit theorem for the localisation distance;

3. A limit theorem describing the potential field near the
localisation site;

4. That the localisation site exhibits ageing (i.e. the time
between successive relocalisations grows linearly).
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An aside: Are our results physically meaningful?
Our exponential decay result implies that

u(t, z)

U(t)
≈ e

−|z−Z(1)
t |

γ
log log t

where Z (1)
t denotes the localisation site, and so∑

z 6=Z (1)
t

u(t, z)

U(t)
≈ 4d e−

1
γ

log log t

So to ensure that
u(t,Z (1)

t )

U(t)
>

1
2

we need
t ≈ exp (exp (γ log(4d))) .

In the case d = 3 with normal tails (γ = 2), this requires t ≈ 1062,
older than the current age of the universe in Planck time. If γ = 3,
we would have to wait until the eventual heat death of the universe
to see localisation.
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Describing the localisation site
Heuristically, the localisation site represents a compromise between
two competing factors:

1. The benefit of being at a region of high potential, i.e.
where lots of high potential sites are clustered;

2. The cost of diffusing too far too quickly.

So we expect that

Z (1)
t = argmaxz∈Zd Ψt(z)

where

Ψt(z) = “benefit of being near site z”
− “cost of z being too far from the origin”

= ft ({ξ(·)}near z) − gt(|z |) for some ft , gt
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Describing the localisation site

The correct functional is

Ψ
(ρ)
t (z) := λ̃

(ρ)
t (z) − |z |

γt log log t

where λ̃(ρ)
t (z) is the principle eigenvalue of the Hamiltonian

H = ∆ + ξ restricted to a ρ-ball around z , for a certain constant
ρ = b(γ − 1)+/2c that depends on the Weibull parameter γ.

The constant ρ is the radius of localisation, i.e. the radius at
which the potential field of neighbouring sites will influence
localisation. Note that ρ = 0 if γ < 3, and so in that case
localisation depends only on ξ as a scalar field.

15 / 25



Describing the localisation site

The correct functional is

Ψ
(ρ)
t (z) := λ̃

(ρ)
t (z) − |z |

γt log log t

where λ̃(ρ)
t (z) is the principle eigenvalue of the Hamiltonian

H = ∆ + ξ restricted to a ρ-ball around z , for a certain constant
ρ = b(γ − 1)+/2c that depends on the Weibull parameter γ.

The constant ρ is the radius of localisation, i.e. the radius at
which the potential field of neighbouring sites will influence
localisation. Note that ρ = 0 if γ < 3, and so in that case
localisation depends only on ξ as a scalar field.

15 / 25



Outline of proof

Step 1: Restrict the domain to a finite ‘macrobox’ Vt , on which
u(t, z) is essentially concentrated, up to negligible error.

Step 2: Consider the spectral representation of the solution:

uVt (t, z) =

|Vt |∑
i=1

etλt,iϕt,i (0)ϕt,i (z) =

|Vt |∑
i=1

etΨt,i ϕt,i (z)

where
Ψt,i := λt,i +

log |ϕt,i (0)|
t .

If we can establish a gap in the maximisers of Ψt,i , larger than
order 1/t, then the spectral representation will be asymptotically
dominated by just one eigenfunction. Complete localisation and
exponential decay is then inherited from the exponential decay of
the dominating eigenfunction.
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Outline of proof

Step 3: Approximate Ψt,i with Ψ
(ρ)
t (zi ) up to a certain error,

where zi = arg maxz∈Vt{ϕt,i (z)}.

To do this we show that

1. λt,i ≈ λ̃(ρ)
t (zi ) ‘eigenvalues lack resonance’

2. ϕt,i (0) ≈ (log t)−|zi |/γ ‘exponential decay of eigenfunctions’

both up to a certain error.

Step 4: Establish that the ‘gap’ in the maximisers of the Ψ
(ρ)
t (z)

exceeds both the order 1/t and the order of the error in step 3.
For this step we use point process techniques.
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Step 4: The point process approach

We rescale the penalisation functional

Yt,z :=
Ψ

(ρ)
t (z)− Art

drt
and Mt :=

∑
z∈Vt

1(zr−1
t ,Yt,z )

using the scales

1. At ∼ maxz∈Vt λ̃
(ρ)(z), for the extremes of the local

eigenvalues;

2. dt := dAt
dt , for the ‘gaps’ in the extremes of the local

eigenvalues;

3. rt := dt
log At

, for the localisation distance.
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Step 4: The point process approach

We show that, on these scales, the set Mt converges to a point
process in the limit. This establishes that the gap between the
maximises of Ψ

(ρ)
t (z) is of the order dt .

The point set Mt , and the trajectories of points in Mt over time.

19 / 25



Localisation in the BTM: Known results
It is known that the BTM only exhibits intermittency in one
dimension. In higher dimensions, the influence of the traps is
negligible in the limit; most trajectories bypass the large traps.

In one dimension, there appears to be three distinct regimes of
localisation:

Tail decay fσ(x) Localisation
(1) Light-tail (i.e. finite mean) � log x No intermittency

(2) Heavy-tail/Pareto, c ∈ (0, 1) ∼ c log x Intermittency,
but no localisation

(3) Super-heavy-tail � log x ??
log-Weibull γ < 1 (log x)γ

log-Pareto log log x

Results in the light-tail/Pareto cases due to [Fontes, Isopi and
Newman, 1999/2012].
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Super-heavy tails

Theorem
Suppose fσ(x)� (log x)γ for γ < 1. Then the BTM exhibits
two-site localisation.

We describe the localisation site explicitly, and prove a number of
related results, including:

1. A limit theorem for the localisation distances;

2. That the mass function on the localisation sites is distributed
as Dirichlet(1, 1) in the limit (i.e. the proportion at each site
is uniformly distributed).
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Describing the localisation site

The two localisation sites Z (1)
t and Z (2)

t take the form of the first
traps on both the positive and negative half-line whose depth
exceeds a certain level lt , which we define as the unique solution to
the equation

fσ(lt) + log lt = log t .

The level lt is chosen to be:

1. Small enough so that the particle has a strong chance of
hitting Γt before time t; but

2. Large enough such that, if the particle hits z ∈ Γt before time
t, it has a strong chance of still being at z at time t.
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Outline of proof

The underlying fact behind the result is:

Proposition
In an i.i.d. sequence of super-heavy-tailed RVs, the running
maximum asymptotically dominates the cumulative sum.

Step 1: Bound in probability the time until the particle hits Γt .

Use Ray-Knight type results to bound this time above by the sum
of the trap depths between the two sites in Γt multiplied by the
distance to Γt . By the Proposition, this time is overwhelmingly
likely to be less than t.
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of the trap depths between the two sites in Γt multiplied by the
distance to Γt . By the Proposition, this time is overwhelmingly
likely to be less than t.
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Outline of proof

Step 2: Condition on the particle hitting z ∈ Γt by time t. Form a
‘box’ around z that essentially contains the mass at time t.

Step 3: Condition on the particle hitting z ∈ Γt by time t, and
place periodic boundary conditions on the box. Since

(∆σ−1)u = 0 =⇒ ∆(σ−1u) = 0 ,

the equilibrium distribution in the box is proportionate to the
trapping landscape, which, by the Proposition, is dominated by the
trap at z . Since we converge monotonically downwards to
equilibrium, the mass is also dominated by z .
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Open questions

Lots of interesting questions remain:

1. In the PAM, a major open question is whether the PAM
always localises on just one island.

2. In the BAM, the nature of the transition from two-site
localisation (super-heavy tails) to delocalisation (heavy-tails)
is unclear. Are there intermediate phases?
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