
Periodicity of Markov polling systems in
overflow regimes

Stas Volkov
(Lund University)

Joint work with 

Iain MacPhee, Mikhail Menshikov and Serguei Popov 

(Durham, Durham, São Paulo)
  

Durham, 3 April 2014

Source paper: http://pi.vu/B27O

http://pi.vu/B27O


 Iain MacPhee

  8 November 1957 - 13 January 2012



K queues One server

“Relative price” of a customer in queue i vs. j is pij

Arrival rates: λ1 … λK Load rates: ρi=λi / µi

Service rates: µ1 … µK Each  ρi<1, but Σ ρi > 1

Service discipline:

• When the server is at node i its serves the queue Qi(t) while it is non-empty

• When the current queue (say 1) becomes empty, the server goes to the “most 
expensive” node, for example to 2 whenever Q2(t)/ Qj(t)> p2j  j=3,…,K

The system will “overflow” but not at an individual node!

Our main result∗: the service will be periodic from some moment of time**

 K=3
** for almost all configurations of parameters



Approach: to analyze the corresponding dynamical (fluid) system

K=3 from now on

The state of the system can be represented as a point on a 3D simplex, i.e. inside the 
equilateral triangle ABC

Points on the sides correspond to situations when one of the queues is empty.

There is a decision point on each side

Mapping ϕ: to light sources A0 B0 and C0, depending on the positions of decision points



If each decision point has finitely many pre-images under ϕ, then the corresponding 
dynamical system will be periodic (follows from pigeonhole principle)

For this configuration, the only period will be
[cbabacaba] – with length 9.



Theorem     1  

Assume each of the decision points DAB, DBC, DCA has finitely many pre-images under .  

• the dynamical system is periodic. At most 4 distinct periods (up to rotations);

• the stochastic polling system is also periodic and has the same periods as the 
dynamical one.
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Theorem     2  

… for almost all configurations of the parameters (e.g.  p12 has a continuous conditional
distribution on some domain when the other parameters are fixed) each of the decision
points DAB, DBC, DCA has finitely many pre-images under ϕ.

Theorem     3  

There are uncountably many these “bad” configurations of decision points. For them:

• some trajectories of the dynamical system are aperiodic. 

• 0 < P (the polling system is aperiodic ) < 1.



Key properties of the dynamical system:

LINEARITY (projection)
PRINCIPLE

Second equilateral triangle
PRINCIPLE

Uniform CONTRACTION
PRINCIPLE



How to justify the approximation?

 The lengths of the queues increase exponentially, at least after some random time

 The dynamical polling system is homogeneous with respect to the loads

 Deviations of the stochastic system from the dynamical one are eventually small



How to justify the approximation?

• The lengths of the queues increase exponentially, at least after some random time

• The dynamical polling system is homogeneous with respect to the loads

• Deviations of the stochastic system from the dynamical one are eventually small

Let        

   f ( t )=∑
i=1

K Qi( t )

μi

Observe that when we serve node j

E ( f (t+dt )− f (t ) |ℑ(t ))=
∑
i=1

K

λi dt

μ i

−
μ j dt

μ j

=[∑
i=1

K

ρi−1 ]dt=ηdt>0

Hence f is a sub-martingale



Suppose the server at time τj has just cleared out node 3. Set   fj = f(τj)

Let X= Q1(τj), Y= Q2(τj), and Z= Q3(τj )=0 be the queue sizes at 1, 2, and 3.
Suppose w.l.o.g. X / Y > p12 so the server ought to move to node 1.

Let τj+1 be the time when the queue at 1 is emptied. Then, if the system did not have any 
randomness in it,

X↦0, Y ↦Y +λ2
X

μ1−λ1

, Z↦ λ3
X

μ1−λ1
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Let X= Q1(τj), Y= Q2(τj), and Z= Q3(τj )=0 be the queue sizes at 1, 2, and 3.
Suppose w.l.o.g. X / Y > p12 so the server ought to move to node 1.

Let τj+1 be the time when the queue at 1 is emptied. Then, if the system did not have any 
randomness in it,

X↦0, Y ↦Y + λ2
X

μ1−λ1

, Z ↦ λ3
X

μ1−λ1

yielding

f j+1

f j

=

1
μ2

(Y + λ2
X

μ1−λ1
)+ 1

μ3

λ3 X

μ1−λ1

X
μ1

+
Y
μ2

=

X
μ1

( ρ2+ ρ3

1−ρ1
)+ Y

μ2

X
μ1

+
Y
μ2

=1+
ρ1+ ρ2+ ρ3−1

1−ρ1
(1+

μ1

μ2

Y
X )

−1

>1+
η

1−ρ1
(1+

μ1

μ2

1
p12

)
−1

≥1+ν

Thus, for the dynamical system we would have fj∝ (1+ν)j



Thus, for the dynamical system we would have fj∝ (1+ν)j

(Recall: f ( t )=∑
i=1

K Qi( t )
μi

)

Now since

f j=f ( τ j )=
X
μ1

+
Y
μ2

≤max (1,
1

p12
)×( X

μ1

+
X
μ2

)≤CX

where

   
C=max (1, p12 , p21 , p13 , p31 , p23 , p32 )

×max ( μ1
(−1)

+μ2
(−1 ) , μ1

(−1)
+μ3

(−1) , μ3
(−1)

+μ2
(−1))

the length of the most expensive queue goes to infinity, as long as  fj →∞.



Deviations of the stochastic system

Obtain exponential bounds on the probability that the j-th service time τj+1-τj deviates by 

more ( X
μ1−λ1

)
2/3

 from its expected value of X
μ1−λ1

.

We obtain similar bounds for the increments of the other two queues.

There is j0 such that for all j>j0 in fact fj+1>(1+ν/2)fj with probability exponentially(-j) 
close to 1.



Let δ>0 be smaller than the length of the smallest interval created by the set 
 P={all pre-images of decision points}

After j0, which we might choose large enough, the “lifetime deviation” of the 
stochastic system from the fluid one is smaller than δ/2 with probability also close to 1.

Let T0=all the sides of the triangle ABC; and Tn=ϕ(Tn-1).

• Tn ⊆ Tn-1 

• for n≥1 every Tn consists of at most 3×2n segments, 2n on each side of the triangle.

total Lebesgue measure of  segments in Tn → 0 as n → ∞.



We can choose n0 so large that 

for all n ≥ n0 distance(Tn,P ) > δ/2

Let xj be the state of the stochastic system at time τj, and

let yj be the closest to xj point of              , possibly xj itself.

Let xj be the state of the stochastic system at time τj, while yj =ϕ (yj-1)

Then as j grows, the distances between xj and yj decay exponentially (contraction 
principle), unless there’s a decision point between them at some time j′. 

However then latter is impossible 
(conditioned on not deviating by more than δ). 

As a result, yj “drags” xj from the same to the same side of the triangle ABC.

And the deterministic dynamical system is periodic!



Construction     of   “  bad”     decision     points     TRIPLES  

Algebraic representation of mapping     ϕ  .  
Each point x on side a ≡ BC can be written as an infinite sequence of 0’s and 1’s.

e.g.          x = a:    0  1 0 1 1 1 0…
then       ϕ(x) = b:0 1  0 1 0 0 0 1… 
or ϕ(x)= c: 1 1  0 1 0 0 0 1…



Set decision points to be

DBC = a: qrq… (“…” - variable pattern)

DCA = b: 0100000… (“…” - all zeros) where q = 1001  
DAB = c: 1010100000… (“…” - all zeros) and r = 0110.

 The sequence for DBC can be written as y = y1y2y3… where yi =∈{q, r}.

Lemma: 
If y satisfies the following properties

 (a) if  yk=r then yk+1yk+2yk+3…> y
(b) if  yk=q then yk+1yk+2yk+3…< y

then DBC has infinitely many pre-images under ϕ 

Such sequences may be  “easily” constructed using
rational approximations of irrational numbers 

y

r < q

any irrational slope∈(1,2)


