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Motivation

There might be an effective descripion of M5-branes.

o Effective description of M2-branes proposed in 2007.

o This created lots of interest:
BLG-model: >625 citations, ABJM-model: >917 citations

Question: Is there a similar description for M5-branes? J

For cautious people:
Is there a a reasonably interesting superconformal field theory of a
non-abelian tensor multiplet in six dimensions?
(The mysterious, long-sought A" = (2,0) SCFT in six dimensions)

A possible way to approach the problem: Look at BPS subsector

o This was how the M2-brane models were derived originally.
o BPS subsector is interesting itself: Integrability
o BPS subsector should be more accessible than full theory.
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Results so far/Outline

Things do look very promising.

o Integrability found:
Nahm construction for self-dual strings using loop space
CS, S Palmer & CS

o Use of loop space justified:
M-theory suggests this, e.g. Geometric quantization of S°
CS & R Szabo

o Integrability reasonable:
Gauge structure of M2- and M5-brane models the same
S Palmer & CS
o Integrability works even without loop space:
Twistor constructions of self-dual strings and non-abelian
tensor multiplets work CS & M Wolf
@ On the way to Geometry of Higher Yang-Mills Fields:

Explicit solutions to non-abelian tensor multiplet equations
F Sala, S Palmer & CS
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Monopoles and Self-Dual Strings

Lifting monopoles to M-theory yields self-dual strings.

BPS configuration

BPS configuration

Perspective of D1: Perspective of M2:
Nahm eqn. Basu-Harvey eqn.
Xt 4 R XTI XF] =0 J s XH4ehvro [ XV XP X] = oJ
1 Nahm transform | 1 generalized Nahm transform |
Perspective of D3: Perspective of M5:
Bogomolny monopole eqn. Self-dual string eqn.
Ej — Eijkvkq) J Hul/p — 5;U/p0'80'q) J
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3-Lie Algebras

In analogy with Lie algebras, we can introduce 3-Lie algebras.

d

BH: X" 4[4, X/] + "7 [X", X, X7 =0, XV'eA
s
3-Lie algebra
Obviously: A is a vector space, [, -, -] trilinear+antisymmetric.

Satisfies a ““3-Jacobi identity,” the fundamental identity:
[A, B, [C, D, E]| = [|A, B,C], D, E] + [C, |A, B, D], E] + [C, D, |A, B, EJ]
Filippov (1985)

Gauge transformations from Lie algebra of inner derivations:
D:ANA— Der(A)=:g4 D(A,B)>C:=[AB,C]|

Algebra of inner derivations closes due to fundamental identity.
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Brief Remarks on 3-Lie Algebras

In analogy with Lie algebras, we can introduce 3-Lie algebras.

Examples:
Lie algebra 3-Lie algebra
Heisenberg-algebra: Nambu-Heisenberg 3-Lie Algebra:
[Ta; ] =€apl, [1,7]=0 [, 75, 7) =€l [L,-,] =0
SU(2) ~ R3: Ay ~RY:
(75, Tj] = €ijkTh [T Tvs Te) = €praTa

Generalizations:

o Real 3-algebras: [+, -, ] antisymmetric only in first two slots
S. Cherkis & CS, 0807.0808

o Hermitian 3-algebras: complex vector spaces, —+ ABJM
Bagger & Lambert, 0807.0163
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Generalizing the ADHMN construction to M-branes

That is, find solutions to H = xd®
from solutions to the Basu-Harvey equation.

As Mb5-branes seem to require gerbes, let's start with them.
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Dirac Monopoles and Principal U(1)-bundles

Dirac monopoles are described by principal U(1)-bundles over S2.

Manifold M with cover (U;);. Principal U(1)-bundle over M:

F € Q*(M,u(1)) with dF =0
Ay € QYU u(1)) with F = dA,
gij € QUi N U;,U(1)) with Ay — Ay = dlog gy
Consider monopole in IR?, but describe it on S? around monopole:
S? with patches U, U_, U, NU_ ~S': g, =e % Lec7Z
i

: 1 2T
o= — | F=_1 A+—A—/ dok =k
21 Jg2 21 Jq1 27 Jo

Monopole charge: k
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Self-Dual Strings and Abelian Gerbes

Self-dual strings are described by abelian gerbes.

Manifold M with cover (U;);. Abelian (local) gerbe over M:
H e Q3(M,u(1)) with dH =0
By € Q*(U;,u(1)) with H = dB;
Aij) € QYU NU;,u(1)) with By — Byjy = dA;;
hije € Q°(Us N U; N U, u(1)) with A(U — Ay + Ajwy = dhaje

Note: Local gerbe: principal U(1)-bundles on intersections U; N U;.
Consider S3, patches U, U_, U, NU_ ~ S?: bundle over 5?
Reflected in: H?(S%,7Z) = H3(S®, %) = Z
i i
— — B —B_=...=k
21 Jgs T or -
Charge of self-dual string: &

Describe p-gerbes + connective structure — Deligne cohomology.
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Gerbes are somewhat unfamiliar, difficult to work with.

Can we somehow avoid using gerbes?
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Abelian Gerbes and Loop Space

By going to loop space, one can reduce differential forms by one degree.

Consider the following double fibration:
LM x S
61/ \\pr
M LM
Identify TLM = LT M, then: © € LM = i(1)e TLM

Transgression

eTLM

Vs
TR M), = bl

(Tw)z(v1(7T), ..., 06(7)) := ]{91 drw(z(7))(vi(7), ..., vk(T),2(7))

Nice properties: reparameterization invariant, chain map, ...

An abelian local gerbe over M is a principal U(1)-bundle over EM.J




Transgressed Self-Dual Strings

By going to loop space, one can reduce differential forms by one degree.
Recall the self-dual string equation on R*: Hye = 5“,,,0\({)%@
Its transgressed form is an equation for a 2-form I on LR*:
- 0
F(ua)(l/p) - 5(0 - p)‘g;w/-c)\x (T) m(b(y)
Yy y=x(7)
Extend to full non-abelian loop space curvature:
+ .
Fuoyr) = Emmrd™(@)V 60 ®)
+ (i?u(U)V(m_)Cb + :i?V((I)V(W_)(I) — 5W,;k”’((7)V(m_)CI>)

[o7]

} 0
where V(“U) = de (5£El (T) A <(5$”‘(7’) + A(,uT))

Goal: Construct solutions to this equation.
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The ADHMN Construction

The ADHMN construction nicely translates to self-dual strings on loop space.

Nahm transform: Instantons on 7 + instantons on (74)*

Roughly here:

3rad. 0 3rad. co : D3 WV
4. 4\ * .
T'{lrad.oo . D1 WV and(T)'{lrad.O

Dirac operators: X’ solve Nahm eqn., X* solve Basu-Harvey eqn.

1B : W—— d g to (X + 2'1y,)
M: V= Y5 6 d st 27’” (D(X“,X”) - i%de#(T).fu(T)>
normalized zero modes: Y =0 and 1 :/ds¢w
z

Solution to Bogomolny/self-dual string equations:

A;:/Idwdw and @ := —i/Idswsw
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Remarks on The Construction

The construction is very natural and behaves as expected.

Nahm eqn. and Basu-Harvey eqn. play analogous roles.

°
o Construction extends to general. Basu-Harvey eqn. (ABJM).
o One can construct many examples explicitly.

°

It reduces nicely to ADHMN via the M2-Higgs mechanism.
CS, 1007.3301, S Palmer & CS, 1105.3904
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More Motivation for Loop Spaces
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Loop Space and the Non-Abelian Tensor Multiplet

A recently proposed 3-Lie algebra valued tensor-multiplet implies a transgression.

3-Lie algebra valued tensor multiplet equations:
VX!t i e, ov - (X7, 0, (X, 0, X7
r“v,v - [x,cv,r,1'v
ViuHong + 18w X1, VIXE C71+ 2o [U,T7F, C7)
Fuy = D(C, Hyw)
V,.C" = D(CH,C")=
D(C*,V,X") = D(CP,V,¥) = D(C*,V,H,,\) =
N Lambert & C Papageorgakis, 1007.2982

J=
J=

Factorization of C” = C'i”. Here, 3-Lie algebra transgression:

(Tw)g(v1(7), ..., v6(7)) := /Sl dr D(w(vi(7),...,vk(7),2(7)),C)

C Papageorgakis & CS, 1103.6192
Often: A vector short of happiness. Loop space has this vector.
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Side Remark: Quantization of R?

In the quantization problem, one is naturally led to loop space.

Geometric quantization prescription: (e.g. fuzzy sphere)

— global holomorphic

Special symplecticJ . line bundle L withJ
sections of L

manifold (M, w) (h,V) over M

Hilbert space ./7: J

Quantization map: [f, ] = ih@ + O(h?)

M-theory: 2-plectic manifold (M, =), @ € Q3(M)
o hol. secs. of gerbe?, quantization of one-forms? Rogers, ...
o Solution: w on LM as w := T w, then proceed as above
o Example: R3 with 2-plectic form w = sijkdxi Adzd A dzF:

(7). 2(0)] = 04 P07 — )+ O(6?)

CS & R Szabo, 1211.0395
o Cf. Kawamoto & Sasakura, Bergshoeff, Berman et al. [2000]
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The duality D1 <> D3 is a duality between Yang-Mills theories.
Question: In what sense are M2- and M5-brane models related?

Start by looking at gauge structure
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Higher Gauge Theory

Higher gauge theory describe parallel transport of extended objects.

Parallel transport of particles in representation of gauge group G:

o holonomy functor: hol : path p — hol(p) € G

o hol(p) = Pexp(fp A), P: path ordering, trivial for U(1).
Parallel transport of strings with gauge group U(1):

o 2-holonomy functor: hols : surface s + holay(s) € U(1)

o holy(s) = exp( [, B), B: connective structure on gerbe.
Nonabelian case:

@ much more involved!

@ no straightforward definition of surface ordering

o solution: Categorification!
see Baez, Huerta, 1003.4485
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Categorifying Gauge Groups

A Lie 2-group is a Lie groupoid with extra structure.

Warning: Categorification neither unique nor straightforward.
Lie 2-group
A Lie 2-group is a

o monoidal category, morph. invertible, obj. weakly invertible.

o Lie groupoid + product @ obeying weakly the group axioms.

’

Simplification: use strict Lie 2-groups &L Lie crossed modules
Lie crossed modules
Pair of Lie groups (G, H), written as (H — G) with:

o left automorphism action >: G x H — H

o group homomorphism t : H — G such that
t(g> h) = gt(h)g™' and t(hy) > hy = hihohy!

. . 1:1 . .
Also: strict Lie 2-algebras +— differential crossed modules



Examples of Lie Crossed Modules

Lie crossed modules come in a large variety.

Lie crossed modules
Pair of Lie groups (G, H), written as (H — G) with:
o left automorphism action >: G x H — H

o group homomorphism t: H — G
t(g> h) = gt(h)g™' and t(hy) > hy = hihohi!

Simplest examples:
o Lie group G, Lie crossed module: (1 — ).

o Abelian Lie group G, Lie crossed module: BG = (G — 1).
More involved:

o Automorphism 2-group of Lie group G: (G N Aut(@))
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Principal 2-Bundles

Higher gauge theory is the dynamical theory of principal 2-bundles.

Consider a manifold M with cover (U,)

Object  Principal G-bundle Principal (H N G)-bundle
Cochains  (g,p) valued in G (gap) valued in G, (hgp.) valued in H
COCyde Gab9be = YGac t(h’u,bc)ga,bgbr: = Gac
hacdhabc - habd(gab > hbcd)
Coboundary  gagl;, = Jabds Jady, = t(hab)gabgs
hachape = (ga > h;bc)hab(gab > h’bc)
gauge pot. A, € QN (U,) @ g A, € QN U,) ® g, B, € Q*(U,) ® b
Curvature F, =dA, + A, N A, F,=dA,+ AcNA,, F,=1t(B,)

Hy,=dB, + A, > B,

Gauge trafos A, := 9o Y Auga + 951 dga {ia =g, Aaga + gaildgu +t(Aq)
B, ;:ggl > B, +A, > A, +dA, — Ay AN A,

Remarks:
o A principal (1 LI G)-bundle is a principal G-bundle.
o A principal (U(1) — 1) = BU(1)-bundle is an abelian gerbe.
o Gauge part of (2,0)-theory: H = xH, F' = t(B).
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Is all this machinery really useful /necessary?
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Differential Crossed Modules from 3-Algebras

3-algebras are merely special classes of differential crossed modules.

Recall the definition of a 3-algebra A:
o [,]: A% - A
o Fundamental identity says that [a,b, ] € Der(A), a,b € A.

Theorem

3 aloebras <L metric Lie algebras g = Der(A)
& faithful orthog. representations V' = A
J Figueroa-O'Farrill et al., 0809.1086

Observations

°0g S Visa simple differential crossed modules
o M2- and M5-brane models have the same gauge structure.
o Via Faulkner construction, all DCMs come with [-, -, -]

o Application of this to M2- and M5-models looks promising.
S Palmer & CS, 1203.5757 |
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Higher Gauge Theory and the Tensor Multiplet

The 3-Lie algebra valued tensor-multiplet as a higher gauge theory.

3-Lie algebra valued tensor multiplet equations:
vix!t -l r,rle,cv - (X7, 0, (X7, 0, X)) =
“v,o — [x!,cv, 1,1y =
ViHong + 18urpor[ X, VXD CT 4 fepnper [0, 170, C7
F, — D(C*, Hyp»
V,.C" = D(CH,C”
D(C*,V,X") = D(C*,V,¥) = D(C*,V,H,,,) =

S— ~— —r [E— —_ [—
I
o e <9 o o c

N Lambert & C Papageorgakis, 1007.2982
Factorization of C” = C'i”. Here, fake curvature equation:
t: A— Der(A), ars D(Cya), Fu =t(H,aa) =:t(B)

= More natural interpretation as higher gauge theory.
S Palmer & CS, 1203.5757
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Numerogroupology

There is a striking sequence involving division/composition algebras in physics.

Division algebras, spheres and groups:

A AP! la| =1 Aut(A) Physics
R RP'=S! 7Z,=8° Aut(R) = 1 Vortex?
C CP'=8* U(1)=S" Aut(U(1)) =7 Monopole
H HP'=S* SU2)=S% Aut(SU(2)) = SU(2) Instanton
O OP'=g8 g7 Aut(D) = G, ?

How should we regard the unit octonions?
o By themselves, they form a Moufang loop &
o Better: Use Faulkner construction to get a 3-algebra
Nambu, Yamazaki, Figueroa-O'Farrill et al.
o Therefore, we have a DCM (gy — R® >~ D)
o This suggests sequence: 7, U(1), SU(2), a Lie 2-group @
o Not (yet) clear how useful this actually is.
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Drop loop spaces: Principal 2-bundles over Twistor Spaces

Now that we saw the power of non-abelian gerbes, let's use them!

Christian Samann Geometry of Higher Yang-Mills Fields



Twistor Description of Higher Yang-Mills Fields 2/37

Using twistor spaces, one can map holomorphic data to solutions to field equations.

Recall the principle of the Penrose-Ward transform:

o Interested in field equations that are equivalent to
integrability of connections along subspaces of spacetime M

o Establish a double fibration
F
P M
P: twistor space, moduli space of subspaces in M

I": correspondence space

o H"(P,S) (e.g. vector bundles) &L sols. to field equations.

o Explicitly appearing: gauge transformations, moduli,
symmetries of the equations, etc.

1:1 . i . H "
o BTW: here, +— is actually a “holomorphic transgression”.
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Known Examples of Twistor Descriptions 20/37

For Yang-Mills theories and its BPS subsectors, there is a wealth of twistor descriptions:

C* x CP! C3 x CP! C*12 x ¢P! x CP!
(DPS 4 T(DPI 3 P5\6 @4\12
Instantons Monopoles (Super) Yang-Mills
hol. vector bundle  hol. vector bundle  hol. vector bundle
s x Cp3

N

abelian H = xH
hol. gerbe

Hughston, Murray, Eastwood, CS & M.Wolf, Mason et al.

Note: last twistor space reduces nicely to the above ones.
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New Results

New: Penrose-Ward transform for self-dual strings.
New twistor space parameterizing hyperplanes in C*:

4 CoP x P!

/\

self-dual strings
hol. principal 2-bundle

CS & M Wolf, 1111.2539, 1205.3108
Note:

o The Hyperplane twistor space P? is the total space of

the line bundle O(1,1) — CP! x CP'.
o The spheres CP' x CP' parameterize an a- and a (-plane.
o The span of both is a hyperplane.
o Nonabelian self-dual string equations: H = xd,®, ' = t(B).
o Reduces nicely to the monopole twistor space: O(2) — CP?.



New Results

New: Penrose-Ward transform for self-dual tensor multiplet.

CH16 x PP
pol4 C6I16

non-abelian self-dual tensor multiplet
hol. principal 2-bundle

CS & M Wolf, 1205.3108
Note:
o PO s a straightforward SUSY generalization of P°
o EOMs, abelian: H = «H, F = t(B), Yo = 0, ¢ = 0
o N = (2,0) SC non-abelian tensor multiplet EOMs!
o EOMs on superspace, remain to be boiled down (expected).
o Non-gerby Alternatives: Chu, Samtleben et al., ...
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Higher ADHM construction

Recall that the conventional ADHM and ADHMN constructions
exist due to a twistor construction in the background.

Thus, there should be a direct ADHM-like construction here, too.
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Towards the Geometry of Higher Yang-Mills Fields

Translate all notions/results surrounding ADHM to higher gauge theory.

L e

ACCADEMIA NAZIONALE DEI LINCEI
SCUOLA NORMALE SUPERIORE

Translate this to higher gauge theory:

LEZIONI FERMIANE

©

Find elementary solutions

M. F. ATIYAH Identify moduli

Geometry

of Yang-Mills Fields

°

o ldentify topological charges
o Higher Serre-Swan theorem
°

Higher ADHM construction

Work in progress
F Sala & S Palmer & CS

PISA - 1979

[ il
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Elementary Solution: The Higher Instanton

The quaternionic form of Belavin et al.'s solution almost translates perfectly.
Recall the quaternionic form of the elementary instanton on S*:

Conformal geometry of S4

Describe S* by H U {oo}. Coordinates: = = ! + iz? + ja3 + ka*.
Conformal transformations:

i (ax+b)(cx+d)~', abc,decH

SU(2)-Instanton:

zdx dz A dx
A=im|(——-) = F=im|——u
o (1 n |> " ((1 + x|2>2>

SU(2)-Anti-Instanton:
xdx dx A dz
A=im|—— F=im|—F—
w(e) = o ()

Belavin et al. 1975, Atiyah 1979



Elementary Solution: The Higher Instanton

The quaternionic form of Belavin et al.'s solution almost translates perfectly.

Issue: H = + « H is sensible only on Minkowski space R!'°.

Recall:
o conformally compactify R*, R"? yields 54, M€= St x §3,
o Both S* and M€ real slices of (9.4, a quadric in CP°.

General pattern:

Conf. compact. of R*" % — C™: real slice of quadric in CP"*!
This illuminates also the conformal transformations:

z = xty, = (ax + b)(cz + d)™*

For certain elements a,d € Cloyen(C"), b, ¢ € Clogqa(C™).

Solution: Quaternions have to be regarded as blocks of C/(C*#)
Work with blocks of the Clifford algebra C/(CY).
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Elementary Solution: The Higher Instanton

The quaternionic form of Belavin et al.'s solution almost translates perfectly.

Solution to the higher instanton equations H = xH, ' = t(B):
o Gauge structure: (€3 @ sl(4, ©) — sl(4, ©) & sl(4,C))

(ks hy | 0

hi,ha, hs € sl(4,C), t>: the usual commutator.

o Solution in coordinates = = Moy, & = MGy

1j?x|2 0 0 idy‘c/\gifcz
s o "

d:f:/\d2552 + 2d§::r/\(21522:c 0
(1+]z[)?

0 dindzndi
H:=dB+ A B= 0 (1+|67‘2)3 but: Peiffer violated

F Sala & S Palmer & CS



Conclusions

Summary and Outlook.

Summary:
V' Generalized ADHMN-like construction on loop space
V" Geometric quantization using loop space
V" Gauge structures in M2- and M5-brane models similar
V" Twistor construction of self-dual tensor fields
v 6d superconformal tensor multiplet equations
v~ On our way to develop Geometry of Higher Yang-Mills Fields
Future directions:
> More general higher bundles and twistors with M Wolf
> Continue translation of ADHM with S Palmer, F Sala
> Geometric Quant. with higher Hilbert spaces  with R Szabo
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