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Dyonic Instantons – Outline

We investigate the properties of dyonic instantons in 5D N = 2
SYM using the moduli space approximation. This is clearly much
simpler than analysing the full field theory. Most of the talk will
concern 2 dyonic instantons with SU(2) gauge group. In this talk I
will:

I Briefly outline what Instantons and Dyonic Instantons are

I Present the results for the Metric and Potential on Moduli
Space

I Discuss some properties of the moduli space, including
geodesic submanifolds

I Present some examples of moduli space dynamics



Instantons in 4+1D SYM

Instantons in 5D SYM are 1
2 -BPS particles. In the 4 spatial directions

they are self-dual solutions with topological charge. In string theory
they correspond to D0-branes in the 1

4 -BPS D0-D4 system.

I D0-branes carry momentum on M-Theory S1 – instantons are
KK modes of 6D field theory.

I Can find moduli space of solutions with fixed energy for given
topological charge.

I Field theory kinetic energy induces metric on moduli space.

I Instanton size is a modulus – possible evolution to zero size
singularity and generic instability to spreading out.



Dyonic Instantons in 4+1D SYM

Also find 1
4 -BPS dyonic instantons. In string theory these are D0-F1

bound states or supertubes between D4-branes.

I D0-F1 lifts to M2 with momentum, SDS on M5.

I Same moduli space and metric as for instantons.

I On Coulomb branch BPS bound includes electric charge
contribution → Potential on moduli space.

I Potential increases with size, so does not suffer unbounded
size instability.

I Single dyonic instanton has conserved charge L, and for L 6= 0
cannot evolve to zero size singularity.



Dyonic Instantons in 4+1D SYM

Consider the bosonic sector of 5D SYM with only one of the five
scalars fields non-vanishing.

S = −
∫

d5xTr

(
1

4
FµνF

µν +
1

2
DµφD

µφ

)
Static finite energy solutions must approach pure gauge at spatial
infinity

Ai → g−1∂ig

and so have a conserved topological charge

k =
−1

8π2

∫
R4

Tr(F ∧ F )

given by the winding number of

g : S3
∞ → SU(2) ∼ S3



Dyonic Instantons in 4+1D SYM

We can derive the BPS conditions from the Hamiltonian

H =
1

2

∫
d4xTr

(
Fi0Fi0 + DiφDiφ+

1

2
FijFij + D0φD0φ

)
=

1

2

∫
d4xTr

(
[Fi0±Diφ]2 +

1

4
[Fij± ∗ Fij ]2 + [D0φ]2

)
±2π2k∓QE

≥ 2π2|k |+ |QE |

where the electric charge is

QE =

∫
d4xTr (Fi0Diφ)



Dyonic Instantons in 4+1D SYM

So for fixed integer (instanton number/charge) k > 0 the BPS
conditions are:

Fij = ∗Fij → Ai (z ; x) , Moduli z

Fi0 = ∓Diφ , D0φ = 0 and eom D iDiφ = 0→ A0 = ∓φ(z ; x)

For each self-dual solution Ai (z) (independent of scalar VEV), find
unique solution φ(z) (dependent on scalar VEV).

Now moduli space approximation

I Each timeslice is a BPS configuration given by moduli z r (t)

I Ai (z ; x)→ Ai (z(t); x)

I A0 = ∓φ→ A0 = ∓φ+ εr ż
r



Metric on Moduli Space – φ = 0
If we define (zero modes) δrAi ≡ ∂rAi − Diεr we see that

Di (δrAj)− Dj (δrAi ) = εijklDk(δrAl) (linearised F = ∗F )

and since Fi0 = −ż rδrAi , Gauss’ Law

0 = D iFi0 = −ż rD iδrAi

is satisfied if we choose εr so that

D i (δrAi ) = 0

The SYM action now becomes

S =
1

2

∫
d5xTr(Fi0Fi0) =

1

2

∫
dtgrs ż

r żs

so moduli space dynamics is geodesic motion with metric

grs(z) = 〈δrAi , δsAi 〉 =

∫
d4xTr (δrAiδsAi )



Metric on Moduli Space – φ 6= 0

Now we write
A0 = φ→ A0 = φ+ ż r εr

but Gauss’ Law is

0 = DiFi0 + [D0φ, φ] = [D0φ, φ] = O(|ż ||q|2)

where |q| is the magnitude of the scalar VEV.



Metric on Moduli Space φ 6= 0

Now for metric note, Fi0 = −ẏ rδrAi after a change of coordinates
y r = z r − |q|K r t.

I Diφ satisfies linearised self-dual equation (like gauge
transformation)

I Diφ satisfies gauge fixing condition Di (Diφ) = 0 due to eom

I Therefore Diφ is a linear combination of zero modes
Diφ = |q|K rδrAi

I K r is Killing since Diφ is symmetry – global gauge
transformation on moduli space.

So we find the same metric as for instantons

1

2

∫
d5xTr(Fi0Fi0) =

1

2

∫
dtgrs ẏ

r ẏ s



Potential on Moduli Space

The potential on moduli space is given by

V =
1

2

∫
d4xTr(DiφDiφ) =

1

2
|q|2grsK rK s

which is the form expected from supersymmetry, with K a moduli
space Killing vector.
Noting that Tr(D0φD0φ) = O(|ż |2|q|2) we have the effective action

S =

∫
dt

(
1

2
grs ẏ

r ẏ s − V

)
+O(|ż |2|q|2)



ADHM Construction

Now, to actually find all self-dual configurations, and to then project
onto the moduli space orthogonal to gauge transformations, sounds
like a difficult problem! However, fortunately this can be reduced to
a (still non-trivial) algebraic problem:

I ADHM Construction – Gives parametrisation of self-dual
configurations

I Osborn projection – Method to project onto gauge-fixed
moduli space within ADHM construction

This gives a method to calculate the metric, and it is also possible
to find the potential in terms of the ADHM data.



ADHM – Constraints and Gauge Field

The ADHM data is encoded in a (N + 2k)× 2k matrix ∆(x). The
ADHM constraint is

∆†∆ = f −1(x)⊗ I2

with f being an invertible k × k matrix.
Then find (N + 2k)× N matrix U(x) satisfying

∆†U = 0 , U†U = IN

and this produces self-dual U(N) gauge fields

Ai = U†∂iU



ADHM – Gauge Invariance

Note that the construction is U(N) gauge invariant since U is only
defined up to U → UV with Ai → V †AiV + V †∂iV .
Note that we can also transform

∆→ Q∆R , U → QU

with Q†Q = I . Osborn showed that an appropriate choice of Q and
R, depending on the moduli, results in a moduli space with tangent
vectors orthogonal to gauge transformations. I.e. it implements a
projection so that ∂rAi are the zero modes δrAi .

In general the moduli space has dimension 4kN. We will focus on
N = 2 and k = 1, 2.



ADHM – Scalar Field

It is also possible to solve for the scalar field, using an ansatz

φ = iU†
(

q 0
0 P

)
U

where the scalar VEV is iq, and the real anti-symmetric 2k × 2k
matrix P can be found from the eom for φ.



ADHM – 2 SU(2) Instantons

Note that we can represent 4-vectors such as x i as quaternions.
When N = 2 we can also use (imaginary) quaternions for SU(2),
and ∆ can be expressed as a (k + 1)× k quaternion matrix. In this
notation we have

∆(x) =

 v1 v2
ρ̃+τ σ
σ ρ̃−τ

−
 0 0

x 0
0 x


I vI → instanton sizes ρI = |vI | and embeddings in SU(2)

I ρ̃→ Centre of Mass – Decouples so ignore

I τ → Instanton relative position (for large |τ |)
I σ = τ

4|τ |2 (v2v1 − v1v2)



Outline of Moduli Space properties

I will not present further details of the calculation of the moduli space
metric and potential. Instead we will see the results and features of
the moduli space and its dynamics.

I Brief review of single instanton

I Metric and potential for 2 instantons

I Geodesic submanifolds – Moduli Subspaces

I Some dynamical properties of 2 instantons (in moduli space
approximation)



Instanton number 1

For a single dyonic instanton the moduli space is 4-dimensional after
removing the trivial centre of mass coordinates. The 4 moduli are
parametrised by a quaternion v describing the instanton size ρ = |v |
and gauge orientation. The effective action is

S = 8π2
∫

dt
(
|v̇ |2 − |q|2|v |2

)
As the action is independent of the gauge orientation parameters,
there are conserved quantities. In detail, if this motion in SU(2) is
parametrised by angle θ, we have

I S ∼
∫
dt
(
ρ̇2 + ρ2θ̇2 − |q|2ρ2

)
I L = ρ2θ̇ is conserved

I EOM → ρ̈− L2ρ−3 + |q|2ρ = 0



Dyonic Instanton Oscillations

The general solution describes the instanton size oscillating with
“amplitude” A,

ρ =

√√√√A sin(2|q|t) +

√
L2

|q|2
+ A2

I The case A = 0 with θ̇ = ±|q| describes a static dyonic
instanton with fixed size.

I In general, provided L 6= 0 the size oscillates in such a way
that the instanton can be arbitrarily large, but will never
evolve to zero size.



Instanton number 2

For k = 2 it is possible to find the metric and potential. Previously
this was known for large separation up to terms of order |τ |−2.

I ds2 = 8π2
(
|dv1|2 + |dv2|2 + |dτ |2 + |dσ|2 − N−1A dk2

)
I V = 8π2|q|2

(
|v1|2 + |v2|2 − N−1A |v2q̂v1 − v1q̂v2|2

)
where

q̂ = q/|q| , NA = |v1|2 + |v2|2 + 4(|τ |2 + |σ|2)

dk = v1dv2 − v2dv1 + 2(τdσ − σdτ)

σ =
τ

4|τ |2
(v2v1 − v1v2)

I Note q̂ dependence in last term of potential.



Symmetries

Now there are two types of symmetry to consider.

I Remaining symmetries of the ADHM data → Identifications
on moduli space

I Symmetries of the metric and potential → conserved charges
and fixed points → geodesic submanifolds

The ADHM identifications include orbifold singularities for zero size
instantons and also describe right-angled scattering – see later.



Moduli space singularities

Some discrete symmetries in the ADHM data include:

I (v1, v2, τ)→ (−v1, v2, τ)

I (v1, v2, τ)→ (v1,−v2, τ)

The Z2 symmetries have fixed points at v1 = 0 and v2 = 0, so the
moduli space has orbifold singularities where either instanton has
zero size.



Half-Dimension Geodesic Submanifold – C ⊂ H

Imaginary unit quaternionic involution by p, p2 = −1

v1 → pv1p , v2 → pv2p , τ → pτp

This requires p parallel to q (in scalar VEV) to be symmetry of
potential.
Get fixed points when v1, v2, τ are in complex subspace spanned
by {1, q}. This geodesic submanifold has half the dimension of
the (relative) moduli space, i.e. dimension 6, so is much simpler to
explore. However it seems to capture all qualitative features of the
full moduli space dynamics.

I τ – Relative position in complex plane

I v1, v2 – Instanton sizes |v1|, |v2| and phase in unbroken U(1)



Vortices and σ-model lumps

I The reduction from 4 to 2 spatial dimensions is in fact the
Hanany-Tong construction of the moduli space of vortices.
This gives a qualitative description of vortex dynamics.

I Actually since we have zero non-commutativity parameter, we
are in the strong coupling limit of the 3D Yang-Mills-Higgs
system, so this is the moduli space of charge 2 O(3) σ-model
lumps.

I There is a further geodesic submanifold (of dimension 4)
where we fix the relative instanton sizes and gauge
orientations, and this is qualitatively similar to the charge 2
Q-lump moduli space of a deformed O(3) σ-model, with the
deformation introducing the potential.



Outline of Dynamics on Moduli Space

We will now present some details of the dynamics on moduli space.
Specific features we will consider are

I Right-angled scattering

I Evolution to zero size singularity

I More general scattering

I Orbiting instantons



Right-angled scattering

There is a discrete symmetry of the ADHM data interchanging τ
and σ  v1 v2

τ σ
σ −τ

→
 (v1 + v2)/

√
2 (v1 − v2)/

√
2

σ τ
τ −σ


So if τ is the relative position of the instantons for large |τ |, the
same should be true for σ. Indeed the eigenvalues of the block are
±
√
τ2 + σ2.



Recalling that

σ =
τ

4|τ |2
(v2v1 − v1v2)

we see that this is consistent since τ large and σ large are exclusive.

Further, if we imagine an evolution with decreasing real τ we see that
we end up with increasing imaginary σ. In general this corresponds
to 90◦ scattering in a plane determined by τ , v1 and v2.

In actual dyonic instanton dynamics the scattering can be more com-
plicated, but this picture of the evolution seems to be a good ap-
proximation in some circumstances.



We can illustrate this right-angled “scattering” in an example with

v1 = 1 , v2 = i

and evolving real

τ = 3,
9

10
,

1√
2
,

1

6

corresponding to

σ =
−i
6
,
−5i

9
,
−i√

2
,−3i

We plot the instanton charge isosurface in (x1, x2, x3).
Note that the instantons both have width |v1| = |v2| = 1.



τ = 3 , σ =
−i
6
,
√
τ2 + σ2 ≈ τ = 3



τ =
9

10
, σ =

−5i

9
,
√
τ2 + σ2 ≈ 0.71 < 1



τ =
1√
2
, σ =

−i√
2
,
√
τ2 + σ2 = 0



τ =
1

6
, σ = −3i ,

√
τ2 + σ2 ≈ σ = −3i



Actual Scattering Example

The following plot shows the actual evolution in the moduli space
approximation. The coloured contours represent the two instanton
shapes and positions in the complex plane (within the 6-dimensional
moduli subspace.)
Note that the setup is not exactly symmetric (and there is a small
impact parameter.) However, we clearly see the formation of a
single charge two lump followed by separation of two instantons,
with right-angled scattering.





Exchange of angular momentum

Now, for a single instanton, a non-zero conserved angular momen-
tum ensured it could not reach zero size. However, for two instan-
tons we still only have one conserved charge

L = ρ21θ̇1 + ρ22θ̇2 +O
(

1

|τ |2

)
≈ L1 + L2

The instantons interact so, even for large separations, there is only
approximate conservation of individual angular momentum.
It is a possibility that the exchange might always be from larger to
smaller, but this is not generally true. We can find examples where
say L1 � L2 > 0 but L2 decreases.



However, recall from single instanton that its size oscillates. Having
zero angular momentum just means that its minimum width reaches
zero. Since L2 will just pass through zero we will only reach zero
size if the oscillation phase is fine tuned. This is possible with the
result that to reach the zero size singularity we must fine tune:

I 1 parameter in the 6-dimensional submanifold

I 3 parameters in the full moduli space



Oscillating width of Instanton 1, ρ1, with L1 approximately constant.



Angular momentum of instanton 2, L2 = ρ22θ̇2.



Oscillating width of Instanton 2, ρ2.



More Instanton Scattering

We will now consider some examples of dyonic instanton scattering,
and some general analysis of the scattering angle. We will work
within the 6-dimensional geodesic submanifold. Some features we
will see are:

I Even for head-on scattering, scattering angle varies from 90◦

as the VEV is turned on.

I Sign of impact parameter is relevant.

In the following diagrams, the circles indicate the size, but not nec-
essarily the shape of the 2 instantons. The initial instanton widths
are 1, initial separation is 50, and the initial velocity is 0.03.
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Head-on scattering, |q| = 0.1, scattering angle ≈ 122◦.
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Impact parameter = −2, |q| = 0.1, scattering angle reduced.
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Impact parameter ≈ +6, |q| = 0.1, instantons wind around.



Scattering Angle v Impact Parameter

The following plot shows the scattering angle in terms of χ – the
angle in the plane made by the outgoing trajectory of the instanton
from the right. We can see that there is a complicated dependence
on the impact parameter and scalar VEV. Some obvious features
are:

I Angle jumps by π – Instantons coincide during scattering so
lose identity.

I Spikes in angle – Fine-tuned conditions allow instantons to
orbit when close before finally separating.



Scattering Angle v Impact Parameter
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Final angle χ v Positive Impact Parameter, for
|q| = 0.02, |q| = 0.05, |q| = 0.07 and |q| = 0.1.



Head-on scattering angle v Scalar VEV

The follow plot shows how the scattering angle depends on the
scalar VEV. In particular we see the interpolation from right-angled
scattering for |q| = 0 to ≈ 122◦ for |q| = 0.2.



Head-on scattering angle v Scalar VEV
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Scattering Angle v Relative Gauge Orientation

There are two different types of 4-dimensional geodesic submanifolds
with fixed relative instanton properties (size and gauge orientation):

I v1 ∝ v2 → Fixed ratio of sizes but no interactions in moduli
space approximation

I v1 = iv2 → Equal sizes and strongest interactions (similar to
Q-lumps)

We can illustrate the increasing interaction strength by plotting the
scattering angle χ as a function of the relative gauge orientation.
We see next an example for impact parameter −0.5.



Scattering Angle v Relative Gauge Orientation
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Orbiting Dyonic Instantons

It is possible to find examples where 2 dyonic instantons orbit each
other, with the separation also oscillating.

One way to study this behaviour is to start with 2 separated instan-
tons and gently push them apart. The instantons interact, but the
force is not parallel to the direction of separation and motion. This
can lead to an interesting orbiting motion.
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Example of dyonic instantons orbiting after initial gentle push apart.



How well bound are the instantons?

There are many questions about the stability of these orbits. A
simple one is what happens as we increase the initial velocity?

I If the initial push is too hard, the instantons will just separate.

I We can plot this escape velocity as a function of the initial
separation.

The result is that there is a fall off as expected with increasing
separation, and some interesting behaviour for small separation.
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Outlook and Work in Progress

There are still many features to study, and many ways to generalise
the system.

I Introduce non-commutativity parameter – resolve zero size
singularity.

I Quantum mechanics on moduli space – bound states, transfer
of angular momentum (and commutative limit)

I Extend to k > 2 – some motivation required!

I Extend to SU(3) – richer structure with more charges. SU(3)?
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