Primes of the Form $x^{2}+n y^{2}$

Steven Charlton

28 November 2012

Outline

1 Motivating Examples
2 Quadratic Forms
3 Class Field Theory
4 Hilbert Class Field

5 Narrow Class Field

6 Cubic Forms

7 Modular Forms and Counting Solutions

Fermat's Claims

$$
p=x^{2}+y^{2} \Leftrightarrow p=2 \text { or } p \equiv 1(\bmod 4)
$$

Fermat's Claims

$$
\begin{aligned}
p=x^{2}+y^{2} \Leftrightarrow p & =2 \text { or } p \equiv 1(\bmod 4) \\
p=x^{2}+2 y^{2} \Leftrightarrow p & \Leftrightarrow 2 \text { or } p \equiv 1,3(\bmod 8) \\
p=x^{2}+3 y^{2} \Leftrightarrow p & =3 \text { or } p \equiv 1(\bmod 3)
\end{aligned}
$$

Other Examples

$$
\begin{aligned}
& p=x^{2}+5 y^{2} \Leftrightarrow p=5 \text { or } p \equiv 1,9(\bmod 20) \\
& p=x^{2}-2 y^{2} \Leftrightarrow p=2 \text { or } p \equiv 1,7(\bmod 8)
\end{aligned}
$$

Other Examples

For $p \neq 2,17$

$$
p=x^{2}+17 y^{2} \Leftrightarrow\left\{\begin{array}{l}
t^{8}+5 t^{6}+4 t^{4}+5 t^{2}+1 \equiv 0(\bmod p) \\
\text { has a solution }
\end{array}\right.
$$

$$
\Leftrightarrow\left\{\begin{array}{l}
(-17 / p)=1 \text { and } \\
t^{4}+t^{2}-2 t+1 \equiv 0(\bmod p) \\
\text { has a solution }
\end{array}\right.
$$

Other Examples

For $p \neq 2,5,71,241$
$p=x^{2}-142 y^{2} \Leftrightarrow\left\{\begin{array}{l}t^{12}-14 t^{10}+109 t^{8}-356 t^{6}+452 t^{4} \\ -352 t^{2}+1024 \equiv 0(\bmod p) \text { has a solution }\end{array}\right.$

$$
\Leftrightarrow\left\{\begin{array}{l}
(142 / p)=1 \text { and } \\
t^{6}-2 t^{5}+t^{4}+2 t^{2}-8 t+8 \equiv 0(\bmod p) \\
\text { has a solution }
\end{array}\right.
$$

Binary Quadratic Forms

Definition

A binary quadratic form is a polynomial $f(x, y)=a x^{2}+b x y+c y^{2}$

Discriminant $D=b^{2}-4 a c$
■ Positive definite if $D<0$

- Indefinite if $D>0$

Which primes does $f(x, y)$ represent?

Equivalence

Act on quadratic forms by $\mathrm{SL}(2, \mathbb{Z})$:

$$
\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) \cdot f(x, y)=f(p x+r y, q x+s y)
$$

- Preserves discriminant
- Represents same integers
- Finite number of equivalence classes

■ Algorithmic way of listing classes

Ideals in Quadratic Fields

D a fundamental discriminant, $K=\mathbb{Q}(\sqrt{D})$
Map:
$\{$ narrow ideal classes in $K\} \longrightarrow$ \{quadratic forms of discriminant D \}

$$
\mathfrak{a}=[\alpha, \beta] \longmapsto Q(x, y)=\frac{1}{\mathrm{~N}(\mathfrak{a})} \mathrm{N}(\alpha x+\beta y)
$$

Ideals in Quadratic Fields

D a fundamental discriminant, $K=\mathbb{Q}(\sqrt{D})$
Map:
\{narrow ideal classes in $K\} \longrightarrow$ \{quadratic forms of discriminant D \}

$$
\mathfrak{a}=[\alpha, \beta] \longmapsto Q(x, y)=\frac{1}{\mathrm{~N}(\mathfrak{a})} \mathrm{N}(\alpha x+\beta y)
$$

Theorem

This map is a bijective correspondence.

Representing Integers

Lemma

m is represented by $f(x, y) \hookleftarrow \mathfrak{a}$ if and only if there is an ideal of norm m in the same narrow class as \mathfrak{a}.

Theorem

An odd prime $p \nmid D$ is represented by some quadratic form of discriminant D if and only if $(D / p)=1$.

Class Number One

Problem solved for class number one:

- All quadratic forms are equivalent

■ $(D / p)=1$ if and only if some form represents p

- if and only if any form represents p

Class Number One

Problem solved for class number one:

- All quadratic forms are equivalent

■ $(D / p)=1$ if and only if some form represents p

- if and only if any form represents p

What if the class number isn't one?
$■$ Need to determine the ideal classes (p) splits into.
■ For $p=x^{2}+n y^{2}$, need (p) to split as principal ideals.
■ How to check if an ideal is principal?

Generalised Ideal Class Groups

Definition

A modulus \mathfrak{m} is a product of primes and distinct real embeddings

$$
\begin{aligned}
\mathcal{I}_{K}(\mathfrak{m}) & =\left\{\text { fractional ideals prime to } \mathfrak{m}_{0}\right\} \\
\mathcal{P}_{1, K}(\mathfrak{m}) & =\left\{\text { principal ideals }(\alpha) \mid \alpha \equiv 1\left(\bmod \mathfrak{m}_{0}\right) \text { and } \sigma(\alpha)>0\right\}
\end{aligned}
$$

Definition

- $H \leq \mathcal{I}_{K}(\mathfrak{m})$ is a congruence subgroup if

$$
\mathcal{P}_{1, K}(\mathfrak{m}) \leq H \leq \mathcal{I}_{K}(\mathfrak{m})
$$

- Then $\mathcal{I}_{K}(\mathfrak{m}) / H$ is a generalised ideal class group

Artin Map

L / K Galois, \mathfrak{P} prime above unramified \mathfrak{p}.

$$
\widetilde{G}:=\operatorname{Gal}\left(\frac{\mathcal{O}_{L} / \mathfrak{P}}{\mathcal{O}_{K} / \mathfrak{p}}\right) \cong D_{\mathfrak{P}} \leq \operatorname{Gal}(L / K)
$$

Definition

Artin symbol is $((L / K) / \mathfrak{P}):=\operatorname{Frob}(\widetilde{G}) \in \operatorname{Gal}(L / K)$
■ If L / K is Abelian the Artin symbol depends only on \mathfrak{p}

- Prime \mathfrak{p} splits completely if and only if $((L / K) / \mathfrak{p})=1$

Definition

Let \mathfrak{m} be divisible by all ramified primes. Extend $((L / K) / \cdot)$ to the Artin map:

$$
\Phi: \mathcal{I}_{K}(\mathfrak{m}) \longrightarrow \operatorname{Gal}(L / K)
$$

Theorems of Class Field Theory

Theorem (Artin Reciprocity)

Let L / K be Abelian, and \mathfrak{m} divisible by all ramified primes. If the exponents of \mathfrak{m} are sufficiently large:

- The Artin map is surjective
- Its kernel is a congruence subgroup
- $\operatorname{Gal}(L / K)$ is a generalised ideal class group

Theorem (Existence)

Given \mathfrak{m}, and H, there is a unique Abelian extension L / K, whose ramified primes divide \mathfrak{m}, such that the Artin map has kernel H.

Hilbert Class Field

Definition

The Hilbert Class Field L arises from $\mathfrak{m}=1$, and $H=\mathcal{P}(K)$

Theorem

The Hilbert class field is the maximal unramified Abelian extension.

Theorem

A prime \mathfrak{p} is principal if and only if it splits completely in L.

Positive-Definite Forms

■ D a fundamental discriminant
■ $Q(x, y) \hookleftarrow \mathcal{O}_{K}$ in $K=\mathbb{Q}(\sqrt{-d})$
■ $L=K(\alpha)$ the Hilbert class field generated by $f(t)$ over \mathbb{Q}

- $\mathbb{Q}(\alpha) / \mathbb{Q}$ generated by $g(t)$

Theorem

- For odd $p \nmid D, p$ is represented by $Q(x, y)$ if and only if (p) splits completely in L / \mathbb{Q}
- If $p \nmid \operatorname{disc} f(t)$, then if and only if $f(t)$ has a root modulo p
- If $p \nmid \operatorname{disc} g(t)$, then if and only if $(-D / p)=1$ and $g(t)$ has a root modulo p

Narrow Class Field

Definition

The Narrow Class Field L arises from $\mathfrak{m}=\sigma_{1} \sigma_{2}$, and $H=\mathcal{P}^{+}(K)$

Theorem

The Narrow class field is the maximal Abelian extension, unramified at all finite primes.

Theorem
A prime \mathfrak{p} is totally positive principal if and only if it splits completely in L.

Indefinite Forms

- D a fundamental discriminant
- $Q(x, y) \leftarrow \mathcal{O}_{K}^{+}$in $K=\mathbb{Q}(\sqrt{d})$

■ $L=K(\alpha)$ the Narrow class field generated by $f(t)$ over \mathbb{Q}

- $\mathbb{Q}(\alpha) / \mathbb{Q}$ generated by $g(t)$

Theorem

- For odd $p \nmid D, p$ is represented by $Q(x, y)$ if and only if (p) splits completely in L / \mathbb{Q}
- If $p \nmid \operatorname{disc} f(t)$, then if and only if $f(t)$ has a root modulo p
- If $p \nmid \operatorname{disc} g(t)$, then if and only if $(-D / p)=1$ and $g(t)$ has a root modulo p

Cubic Forms

When is $p=a^{3}+11 b^{3}+121 c^{3}-33 a b c$?

Cubic Forms

When is $p=a^{3}+11 b^{3}+121 c^{3}-33 a b c$?
Plan of attack:
1 Recognize this as a norm form
2 Phrase it in terms of number fields
3 Throw some class field theory at it
4 ?
5 Profit

Profit

For $p \neq 2,3,11$

$$
p=a^{3}+11 b^{3}+121 c^{3}-33 a b c \Leftrightarrow\left\{\begin{array}{l}
t^{6}-15 t^{4}+9 t^{2}-4 \equiv 0(\bmod p) \\
\text { has a solution }
\end{array}\right.
$$

Representation Numbers and Theta Series

■ How many solutions?

Definition

The Theta series of $Q(x, y)$ is:

$$
\Theta_{Q}:=\sum_{(x, y) \in \mathbb{Z}^{2}} q^{Q(x, y)}=\sum_{n=0}^{\infty} r_{n}(Q) q^{n}
$$

■ This is a modular form (for some group, weight, character...)

Representation Numbers and Theta Series

■ How many solutions?

Definition

The Theta series of $Q(x, y)$ is:

$$
\Theta_{Q}:=\sum_{(x, y) \in \mathbb{Z}^{2}} q^{Q(x, y)}=\sum_{n=0}^{\infty} r_{n}(Q) q^{n}
$$

■ This is a modular form (for some group, weight, character...)

- Take characters χ of the class group

■ Look at linear combinations of the Theta series

L-Series

Definition

L-series of $f=\sum_{n} a_{n} q^{n}$ is $L(f, s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$

L-Series

Definition

L-series of $f=\sum_{n} a_{n} q^{n}$ is $L(f, s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$
The linear combinations here have an Euler product:

$$
L(f, s)=\prod_{p \text { prime }} \frac{1}{1-a_{p} p^{-s}+(D / p) p^{-2 s}}
$$

Formulae for Representation Numbers

$$
\begin{aligned}
r_{x^{2}+5 y^{2}}(n) & =\sum_{d \mid n}\left(\frac{-20}{d}\right)+\left(\frac{-4}{d}\right)\left(\frac{5}{n / d}\right) \\
r_{2 x^{2}+2 x y+3 y^{2}}(n) & =\sum_{d \mid n}\left(\frac{-20}{d}\right)-\left(\frac{-4}{d}\right)\left(\frac{5}{n / d}\right)
\end{aligned}
$$

Epilogue

Still plenty to be done...

- Non-fundamental discriminants
- Separating all forms of discriminant D
- Class field theory struggles
- Modular forms work better
- Finding other representation numbers
- More general polynomial equations
- Non-abelian class field theory
- Langlands program

