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Fermat’s Claims

p = x2 + y2 ⇔ p = 2 or p ≡ 1 (mod 4)

p = x2 + 2y2 ⇔ p = 2 or p ≡ 1, 3 (mod 8)
p = x2 + 3y2 ⇔ p = 3 or p ≡ 1 (mod 3)
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Other Examples

p = x2 + 5y2 ⇔ p = 5 or p ≡ 1, 9 (mod 20)
p = x2 − 2y2 ⇔ p = 2 or p ≡ 1, 7 (mod 8)
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Other Examples

For p 6= 2, 17

p = x2 + 17y2 ⇔
{

t8 + 5t6 + 4t4 + 5t2 + 1 ≡ 0 (mod p)
has a solution

⇔


(−17/p) = 1 and
t4 + t2 − 2t + 1 ≡ 0 (mod p)
has a solution
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Other Examples

For p 6= 2, 5, 71, 241

p = x2 − 142y2 ⇔
{

t12 − 14t10 + 109t8 − 356t6 + 452t4

− 352t2 + 1024 ≡ 0 (mod p) has a solution

⇔


(142/p) = 1 and
t6 − 2t5 + t4 + 2t2 − 8t + 8 ≡ 0 (mod p)
has a solution
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Binary Quadratic Forms

Definition
A binary quadratic form is a polynomial f (x, y) = ax2 + bxy + cy2

Discriminant D = b2 − 4ac
Positive definite if D < 0
Indefinite if D > 0

Which primes does f (x, y) represent?
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Equivalence

Act on quadratic forms by SL(2,Z):(
p q
r s

)
· f (x, y) = f (px + ry, qx + sy)

Preserves discriminant
Represents same integers
Finite number of equivalence classes
Algorithmic way of listing classes
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Ideals in Quadratic Fields

D a fundamental discriminant, K = Q(
√

D)

Map:

{narrow ideal classes in K} −→ {quadratic forms of discriminant D}

a = [α, β] 7−→ Q(x, y) = 1
N(a) N(αx + βy)

Theorem
This map is a bijective correspondence.
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Representing Integers

Lemma
m is represented by f (x, y)←[ a if and only if there is an ideal of
norm m in the same narrow class as a.

Theorem
An odd prime p - D is represented by some quadratic form of
discriminant D if and only if (D/p) = 1.
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Class Number One

Problem solved for class number one:
All quadratic forms are equivalent
(D/p) = 1 if and only if some form represents p
if and only if any form represents p

What if the class number isn’t one?
Need to determine the ideal classes (p) splits into.
For p = x2 + ny2, need (p) to split as principal ideals.
How to check if an ideal is principal?
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Generalised Ideal Class Groups

Definition
A modulus m is a product of primes and distinct real embeddings

IK (m) = { fractional ideals prime to m0}
P1,K (m) = { principal ideals (α) | α ≡ 1 (mod m0) and σ(α) > 0}

Definition

H ≤ IK (m) is a congruence subgroup if

P1,K (m) ≤ H ≤ IK (m)

Then IK (m)/H is a generalised ideal class group
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Artin Map
L/K Galois, P prime above unramified p.

G̃ := Gal
(OL/P

OK/p

)
∼= DP ≤ Gal(L/K )

Definition
Artin symbol is ((L/K )/P) := Frob(G̃) ∈ Gal(L/K )

If L/K is Abelian the Artin symbol depends only on p

Prime p splits completely if and only if ((L/K )/p) = 1

Definition
Let m be divisible by all ramified primes. Extend ((L/K )/·) to the
Artin map:

Φ: IK (m) −→ Gal(L/K )
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Theorems of Class Field Theory

Theorem (Artin Reciprocity)

Let L/K be Abelian, and m divisible by all ramified primes. If the
exponents of m are sufficiently large:

The Artin map is surjective
Its kernel is a congruence subgroup
Gal(L/K ) is a generalised ideal class group

Theorem (Existence)

Given m, and H , there is a unique Abelian extension L/K , whose
ramified primes divide m, such that the Artin map has kernel H .
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Hilbert Class Field

Definition
The Hilbert Class Field L arises from m = 1, and H = P(K )

Theorem
The Hilbert class field is the maximal unramified Abelian extension.

Theorem
A prime p is principal if and only if it splits completely in L.
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Positive-Definite Forms

D a fundamental discriminant
Q(x, y)←[ OK in K = Q(

√
−d)

L = K (α) the Hilbert class field generated by f (t) over Q
Q(α)/Q generated by g(t)

Theorem

For odd p - D, p is represented by Q(x, y) if and only if (p)
splits completely in L/Q
If p - disc f (t), then if and only if f (t) has a root modulo p
If p - disc g(t), then if and only if (−D/p) = 1 and g(t) has a
root modulo p
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Narrow Class Field

Definition
The Narrow Class Field L arises from m = σ1σ2, and H = P+(K )

Theorem
The Narrow class field is the maximal Abelian extension,
unramified at all finite primes.

Theorem
A prime p is totally positive principal if and only if it splits
completely in L.
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Indefinite Forms

D a fundamental discriminant
Q(x, y)←[ O+

K in K = Q(
√

d)
L = K (α) the Narrow class field generated by f (t) over Q
Q(α)/Q generated by g(t)

Theorem

For odd p - D, p is represented by Q(x, y) if and only if (p)
splits completely in L/Q
If p - disc f (t), then if and only if f (t) has a root modulo p
If p - disc g(t), then if and only if (−D/p) = 1 and g(t) has a
root modulo p
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Cubic Forms

When is p = a3 + 11b3 + 121c3 − 33abc?

Plan of attack:
1 Recognize this as a norm form
2 Phrase it in terms of number fields
3 Throw some class field theory at it
4 ?
5 Profit
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Profit

For p 6= 2, 3, 11

p = a3+11b3+121c3−33abc ⇔
{

t6 − 15t4 + 9t2 − 4 ≡ 0 (mod p)
has a solution
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Representation Numbers and Theta Series

How many solutions?

Definition
The Theta series of Q(x, y) is:

ΘQ :=
∑

(x,y)∈Z2

qQ(x,y) =
∞∑

n=0
rn(Q)qn

This is a modular form (for some group, weight, character. . . )

Take characters χ of the class group
Look at linear combinations of the Theta series
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L-Series

Definition

L-series of f =
∑

n
anqn is L(f , s) =

∞∑
n=1

an
ns

The linear combinations here have an Euler product:

L(f , s) =
∏

p prime

1
1− app−s + (D/p)p−2s

20 / 22



Motivation Quadratic Forms Class Field Theory Hilbert Class Field Narrow Class Field Cubic Forms Modular Forms

L-Series

Definition

L-series of f =
∑

n
anqn is L(f , s) =

∞∑
n=1

an
ns

The linear combinations here have an Euler product:

L(f , s) =
∏

p prime

1
1− app−s + (D/p)p−2s

20 / 22



Motivation Quadratic Forms Class Field Theory Hilbert Class Field Narrow Class Field Cubic Forms Modular Forms

Formulae for Representation Numbers

rx2+5y2(n) =
∑
d|n

(
−20

d

)
+
(
−4
d

)(
5

n/d

)

r2x2+2xy+3y2(n) =
∑
d|n

(
−20

d

)
−
(
−4
d

)(
5

n/d

)
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Epilogue

Still plenty to be done. . .

Non-fundamental discriminants
Separating all forms of discriminant D

Class field theory struggles
Modular forms work better

Finding other representation numbers
More general polynomial equations

Non-abelian class field theory
Langlands program
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