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Chain Spaces in Rd

A chain is a configuration in R2 of length vectors `1, . . . , `n−1,
joining two points at a distance of `n.

Definition

Let ` ∈ Rn
>0 (i.e. ` = (`1, . . . , `n) with `i > 0 for i = 1, . . . , n). A

chain space for ` in R2 can be defined as

Cn
2 (`) = {(u1, . . . , un) ∈ (S1)n−1 :

n−1∑
i=1

`iui = `n}

A definition for a chain space in Rd can be given completely
analogously as:

Cn
d(`) = {(u1, . . . , un) ∈ (Sd−1)n−1 :

n−1∑
i=1

`iui = `ne1}
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Properties of Cn
d(`)

Cn
d(`) = {(u1, . . . , un) ∈ (Sd−1)n−1 :

n−1∑
i=1

`iui = `ne1}

1 Cn
d(`) is a manifold of dimension (n − 2)(d − 1)− 1, provided

that ` is generic (i.e.
∑
εi`i 6= 0 for εi = ±1).

2 If σ is a permutation of {1, . . . , n− 1}, then Cn
d(`) and Cn

d(σ`)
are diffeomorphic, where σ` = (`σ(1), . . . `σ(n−1), `n).

3 Each Cn
d(`) is determined (up to diffeomorphism) by subsets

J ⊂ {1, . . . , n} with the property that:∑
i∈J

`i <
∑
i 6∈J

`i

Such subsets J are called short.
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Moduli Space (Or Polygon Space)

The special orthogonal group SO(d − 1) acts on Cn
d(`) diagonally,

leaving the first coordinate fixed. Thus, we can define the
moduli space of linkages (or chains) as

Md(`) = Cn
d(`)/SO(d − 1).

Md(`) is sometimes defined as the polygon space

Md(`) = {(z1, . . . , zn) ∈ (Sd−1)n :
n∑

i=1

`izi = 0}/SO(d)

The topology of Md(`)?: Quite a lot is known for the case
d = 2, 3. The cases d > 3 are (mostly) still unknown.
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Beyond..

Let v ∈ V , an arbitrary vector space and G a (compact) Lie group
acting on V . Then we can define the set

NG (`) = {(x1, . . . , xn) ∈ Gn :
n∑

i=1

`iv
xi = 0 ∈ V }.

It can be shown NG (`) is a manifold. The proof of this relies on a
natural map from NG (`) to the space

NG(v)(`) = {(y1, . . . , yn) ∈ G (v)n :
n∑

i=1

`iyi = 0 ∈ V }.
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The (compact) Lie group G acts naturally on NG (`). Therefore we
can define the moduli space MG (`) = NG (`)/G as

MG (`) = {(x1, . . . , xn−1) ∈ Gn−1 :
n−1∑
i=1

`iv
xi = `nv}.

The behaviour of NG(v)(`)/G is not so nice. But

NG(v)(`)/G ∼= {(y1, . . . , yn) ∈ G (v)n−1 :
n−1∑
i=1

`iyi = `nv}/Gv .

So define the G -chain space CG (`) as

CG (`) = {(y1, . . . , yn) ∈ G (v)n−1 :
n−1∑
i=1

`iyi = `nv}.
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Examples

1 Consider the action of G = SO(4) on V = R4. Then,

H∗(MG (`); Q) ∼= H∗(Cn
4 )

⊗
H∗(SO(3)n−1; Q).

2 Consider the action of G = SO(4r) on V = R4r . Then,

H∗(MG (`); Q) ∼= H∗(Cn
4r )

⊗
H∗(SO(4r − 1)n−1; Q).

3 If G = U(d) acts on V = Cd , then H∗(MG (`)) can be
expressed in terms of H∗(Cn

2d) and H∗(U(n − 1)).
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