Chain Spaces Beyond \mathbb{R}^d

Dan Jones

Durham University

1st November, 2012

Chain Spaces in \mathbb{R}^d

A *chain* is a configuration in \mathbb{R}^2 of length vectors $\ell_1, \ldots, \ell_{n-1}$, joining two points at a distance of ℓ_n .

Chain Spaces in \mathbb{R}^d

A *chain* is a configuration in \mathbb{R}^2 of length vectors $\ell_1, \ldots, \ell_{n-1}$, joining two points at a distance of ℓ_n .

Definition

Let $\ell \in \mathbb{R}_{>0}^n$ (i.e. $\ell = (\ell_1, \ldots, \ell_n)$ with $\ell_i > 0$ for $i = 1, \ldots, n$). A *chain space* for ℓ in \mathbb{R}^2 can be defined as

$$C_2^n(\ell) = \{(u_1,\ldots,u_n) \in (S^1)^{n-1} : \sum_{i=1}^{n-1} \ell_i u_i = \ell_n\}$$

Chain Spaces in \mathbb{R}^d

A *chain* is a configuration in \mathbb{R}^2 of length vectors $\ell_1, \ldots, \ell_{n-1}$, joining two points at a distance of ℓ_n .

Definition

Let $\ell \in \mathbb{R}^n_{>0}$ (i.e. $\ell = (\ell_1, \ldots, \ell_n)$ with $\ell_i > 0$ for $i = 1, \ldots, n$). A *chain space* for ℓ in \mathbb{R}^2 can be defined as

$$C_2^n(\ell) = \{(u_1, \ldots, u_n) \in (S^1)^{n-1} : \sum_{i=1}^{n-1} \ell_i u_i = \ell_n\}$$

A definition for a chain space in \mathbb{R}^d can be given completely analogously as:

$$C_d^n(\ell) = \{(u_1, \ldots, u_n) \in (S^{d-1})^{n-1} : \sum_{i=1}^{n-1} \ell_i u_i = \ell_n \mathbf{e_1}\}$$

Properties of $C_d^n(\ell)$

$$C_d^n(\ell) = \{(u_1, \ldots, u_n) \in (S^{d-1})^{n-1} : \sum_{i=1}^{n-1} \ell_i u_i = \ell_n \mathbf{e_1}\}$$

æ

▲□ ▶ ▲ 臣 ▶ ▲ 臣

Properties of $\mathcal{C}_d^n(\ell)$

$$C_d^n(\ell) = \{(u_1, \ldots, u_n) \in (S^{d-1})^{n-1} : \sum_{i=1}^{n-1} \ell_i u_i = \ell_n \mathbf{e_1}\}$$

• $C_d^n(\ell)$ is a manifold of dimension (n-2)(d-1)-1, provided that ℓ is generic (i.e. $\sum \epsilon_i \ell_i \neq 0$ for $\epsilon_i = \pm 1$).

Properties of $\mathcal{C}_d^n(\ell)$

$$C_d^n(\ell) = \{(u_1, \ldots, u_n) \in (S^{d-1})^{n-1} : \sum_{i=1}^{n-1} \ell_i u_i = \ell_n \mathbf{e_1}\}$$

- $C_d^n(\ell)$ is a manifold of dimension (n-2)(d-1)-1, provided that ℓ is generic (i.e. $\sum \epsilon_i \ell_i \neq 0$ for $\epsilon_i = \pm 1$).
- **2** If σ is a permutation of $\{1, \ldots, n-1\}$, then $C_d^n(\ell)$ and $C_d^n(\sigma\ell)$ are diffeomorphic, where $\sigma\ell = (\ell_{\sigma(1)}, \ldots, \ell_{\sigma(n-1)}, \ell_n)$.

Properties of $\mathcal{C}_d^n(\ell)$

$$C_d^n(\ell) = \{(u_1, \ldots, u_n) \in (S^{d-1})^{n-1} : \sum_{i=1}^{n-1} \ell_i u_i = \ell_n \mathbf{e_1}\}$$

- $C_d^n(\ell)$ is a manifold of dimension (n-2)(d-1)-1, provided that ℓ is generic (i.e. $\sum \epsilon_i \ell_i \neq 0$ for $\epsilon_i = \pm 1$).
- **2** If σ is a permutation of $\{1, \ldots, n-1\}$, then $C_d^n(\ell)$ and $C_d^n(\sigma\ell)$ are diffeomorphic, where $\sigma\ell = (\ell_{\sigma(1)}, \ldots, \ell_{\sigma(n-1)}, \ell_n)$.
- So Each $C_d^n(\ell)$ is determined (up to diffeomorphism) by subsets $J \subset \{1, \ldots, n\}$ with the property that:

$$\sum_{i \in J} \ell_i < \sum_{i \notin J} \ell_i$$

Such subsets J are called *short*.

The special orthogonal group SO(d-1) acts on $C_d^n(\ell)$ diagonally, leaving the first coordinate fixed. Thus, we can define the *moduli space* of linkages (or chains) as

$$\mathcal{M}_d(\ell) = \mathcal{C}_d^n(\ell)/SO(d-1).$$

The special orthogonal group SO(d-1) acts on $C_d^n(\ell)$ diagonally, leaving the first coordinate fixed. Thus, we can define the *moduli space* of linkages (or chains) as

$$\mathcal{M}_d(\ell) = \mathcal{C}_d^n(\ell)/SO(d-1).$$

 $\mathcal{M}_d(\ell)$ is sometimes defined as the *polygon space*

$$\mathcal{M}_d(\ell) = \{(z_1, \ldots, z_n) \in (S^{d-1})^n : \sum_{i=1}^n \ell_i z_i = 0\}/SO(d)$$

The special orthogonal group SO(d-1) acts on $C_d^n(\ell)$ diagonally, leaving the first coordinate fixed. Thus, we can define the *moduli space* of linkages (or chains) as

$$\mathcal{M}_d(\ell) = \mathcal{C}_d^n(\ell)/SO(d-1).$$

 $\mathcal{M}_d(\ell)$ is sometimes defined as the *polygon space*

$$\mathcal{M}_d(\ell) = \{(z_1, \ldots, z_n) \in (S^{d-1})^n : \sum_{i=1}^n \ell_i z_i = 0\}/SO(d)$$

The topology of $\mathcal{M}_d(\ell)$?: Quite a lot is known for the case d = 2, 3. The cases d > 3 are (mostly) still unknown.

Beyond..

æ

$$N_G(\ell) = \{(x_1, \ldots, x_n) \in G^n : \sum_{i=1}^n \ell_i v^{x_i} = 0 \in V\}.$$

$$N_G(\ell) = \{(x_1, \ldots, x_n) \in G^n : \sum_{i=1}^n \ell_i v^{x_i} = 0 \in V\}.$$

It can be shown $N_G(\ell)$ is a manifold.

$$N_G(\ell) = \{(x_1, \ldots, x_n) \in G^n : \sum_{i=1}^n \ell_i v^{x_i} = 0 \in V\}.$$

It can be shown $N_G(\ell)$ is a manifold. The proof of this relies on a natural map from $N_G(\ell)$ to the space

$$N_{G(v)}(\ell) = \{(y_1, \ldots, y_n) \in G(v)^n : \sum_{i=1}^n \ell_i y_i = 0 \in V\}.$$

$$M_G(\ell) = \{(x_1, \ldots, x_{n-1}) \in G^{n-1} : \sum_{i=1}^{n-1} \ell_i v^{x_i} = \ell_n v\}.$$

$$M_G(\ell) = \{(x_1, \ldots, x_{n-1}) \in G^{n-1} : \sum_{i=1}^{n-1} \ell_i v^{x_i} = \ell_n v\}.$$

The behaviour of $N_{G(v)}(\ell)/G$ is not so nice.

$$M_G(\ell) = \{(x_1, \ldots, x_{n-1}) \in G^{n-1} : \sum_{i=1}^{n-1} \ell_i v^{x_i} = \ell_n v\}.$$

The behaviour of $N_{G(v)}(\ell)/G$ is not so nice. But

$$N_{G(v)}(\ell)/G \cong \{(y_1,\ldots,y_n) \in G(v)^{n-1} : \sum_{i=1}^{n-1} \ell_i y_i = \ell_n v\}/G_v.$$

$$M_G(\ell) = \{(x_1, \ldots, x_{n-1}) \in G^{n-1} : \sum_{i=1}^{n-1} \ell_i v^{x_i} = \ell_n v\}.$$

The behaviour of $N_{G(v)}(\ell)/G$ is not so nice. But

$$N_{G(v)}(\ell)/G \cong \{(y_1,\ldots,y_n) \in G(v)^{n-1} : \sum_{i=1}^{n-1} \ell_i y_i = \ell_n v\}/G_v.$$

So define the *G*-chain space $C_G(\ell)$ as

$$M_G(\ell) = \{(x_1, \ldots, x_{n-1}) \in G^{n-1} : \sum_{i=1}^{n-1} \ell_i v^{x_i} = \ell_n v\}.$$

The behaviour of $N_{G(v)}(\ell)/G$ is not so nice. But

$$N_{G(v)}(\ell)/G \cong \{(y_1,\ldots,y_n) \in G(v)^{n-1} : \sum_{i=1}^{n-1} \ell_i y_i = \ell_n v\}/G_v.$$

So define the *G*-chain space $C_G(\ell)$ as

$$C_G(\ell) = \{(y_1, \ldots, y_n) \in G(v)^{n-1} : \sum_{i=1}^{n-1} \ell_i y_i = \ell_n v\}.$$

▲ □ ▶ ▲ 三

æ

() Consider the action of G = SO(4) on $V = \mathbb{R}^4$. Then,

$$H^*(M_G(\ell);\mathbb{Q})\cong H^*(\mathcal{C}_4^n)\bigotimes H^*(SO(3)^{n-1};\mathbb{Q}).$$

▲□ ► ▲ □ ► ▲

① Consider the action of G = SO(4) on $V = \mathbb{R}^4$. Then,

$$H^*(M_G(\ell);\mathbb{Q}) \cong H^*(\mathcal{C}_4^n) \bigotimes H^*(SO(3)^{n-1};\mathbb{Q}).$$

2 Consider the action of G = SO(4r) on $V = \mathbb{R}^{4r}$. Then,

$$H^*(M_G(\ell);\mathbb{Q})\cong H^*(\mathcal{C}^n_{4r})\bigotimes H^*(SO(4r-1)^{n-1};\mathbb{Q}).$$

① Consider the action of G = SO(4) on $V = \mathbb{R}^4$. Then,

$$H^*(M_G(\ell);\mathbb{Q}) \cong H^*(\mathcal{C}_4^n) \bigotimes H^*(SO(3)^{n-1};\mathbb{Q}).$$

2 Consider the action of G = SO(4r) on $V = \mathbb{R}^{4r}$. Then,

$$H^*(M_G(\ell);\mathbb{Q})\cong H^*(\mathcal{C}^n_{4r})\bigotimes H^*(SO(4r-1)^{n-1};\mathbb{Q}).$$

• If G = U(d) acts on $V = \mathbb{C}^d$, then $H^*(M_G(\ell))$ can be expressed in terms of $H^*(\mathcal{C}^n_{2d})$ and $H^*(U(n-1))$.