Chain Spaces Beyond \mathbb{R}^{d}

Dan Jones

Durham University

1st November, 2012

Chain Spaces in \mathbb{R}^{d}

A chain is a configuration in \mathbb{R}^{2} of length vectors $\ell_{1}, \ldots, \ell_{n-1}$, joining two points at a distance of ℓ_{n}.

Chain Spaces in \mathbb{R}^{d}

A chain is a configuration in \mathbb{R}^{2} of length vectors $\ell_{1}, \ldots, \ell_{n-1}$, joining two points at a distance of ℓ_{n}.

Definition

Let $\ell \in \mathbb{R}_{>0}^{n}$ (i.e. $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right)$ with $\ell_{i}>0$ for $i=1, \ldots, n$). A chain space for ℓ in \mathbb{R}^{2} can be defined as

$$
\mathcal{C}_{2}^{n}(\ell)=\left\{\left(u_{1}, \ldots, u_{n}\right) \in\left(S^{1}\right)^{n-1}: \sum_{i=1}^{n-1} \ell_{i} u_{i}=\ell_{n}\right\}
$$

Chain Spaces in \mathbb{R}^{d}

A chain is a configuration in \mathbb{R}^{2} of length vectors $\ell_{1}, \ldots, \ell_{n-1}$, joining two points at a distance of ℓ_{n}.

Definition

Let $\ell \in \mathbb{R}_{>0}^{n}$ (i.e. $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right)$ with $\ell_{i}>0$ for $i=1, \ldots, n$). A chain space for ℓ in \mathbb{R}^{2} can be defined as

$$
\mathcal{C}_{2}^{n}(\ell)=\left\{\left(u_{1}, \ldots, u_{n}\right) \in\left(S^{1}\right)^{n-1}: \sum_{i=1}^{n-1} \ell_{i} u_{i}=\ell_{n}\right\}
$$

A definition for a chain space in \mathbb{R}^{d} can be given completely analogously as:

$$
\mathcal{C}_{d}^{n}(\ell)=\left\{\left(u_{1}, \ldots, u_{n}\right) \in\left(S^{d-1}\right)^{n-1}: \sum_{i=1}^{n-1} \ell_{i} u_{i}=\ell_{n} \mathbf{e}_{1}\right\}
$$

Properties of $\mathcal{C}_{d}^{n}(\ell)$

$$
\mathcal{C}_{d}^{n}(\ell)=\left\{\left(u_{1}, \ldots, u_{n}\right) \in\left(S^{d-1}\right)^{n-1}: \sum_{i=1}^{n-1} \ell_{i} u_{i}=\ell_{n} \mathbf{e}_{1}\right\}
$$

Properties of $\mathcal{C}_{d}^{n}(\ell)$

$$
\mathcal{C}_{d}^{n}(\ell)=\left\{\left(u_{1}, \ldots, u_{n}\right) \in\left(S^{d-1}\right)^{n-1}: \sum_{i=1}^{n-1} \ell_{i} u_{i}=\ell_{n} \mathbf{e}_{1}\right\}
$$

(1) $\mathcal{C}_{d}^{n}(\ell)$ is a manifold of dimension $(n-2)(d-1)-1$, provided that ℓ is generic (i.e. $\sum \epsilon_{i} \ell_{i} \neq 0$ for $\epsilon_{i}= \pm 1$).

$$
\mathcal{C}_{d}^{n}(\ell)=\left\{\left(u_{1}, \ldots, u_{n}\right) \in\left(S^{d-1}\right)^{n-1}: \sum_{i=1}^{n-1} \ell_{i} u_{i}=\ell_{n} \mathbf{e}_{1}\right\}
$$

(1) $\mathcal{C}_{d}^{n}(\ell)$ is a manifold of dimension $(n-2)(d-1)-1$, provided that ℓ is generic (i.e. $\sum \epsilon_{i} \ell_{i} \neq 0$ for $\epsilon_{i}= \pm 1$).
(2) If σ is a permutation of $\{1, \ldots, n-1\}$, then $\mathcal{C}_{d}^{n}(\ell)$ and $\mathcal{C}_{d}^{n}(\sigma \ell)$ are diffeomorphic, where $\sigma \ell=\left(\ell_{\sigma(1)}, \ldots \ell_{\sigma(n-1)}, \ell_{n}\right)$.

$$
\mathcal{C}_{d}^{n}(\ell)=\left\{\left(u_{1}, \ldots, u_{n}\right) \in\left(S^{d-1}\right)^{n-1}: \sum_{i=1}^{n-1} \ell_{i} u_{i}=\ell_{n} \mathbf{e}_{1}\right\}
$$

(1) $\mathcal{C}_{d}^{n}(\ell)$ is a manifold of dimension $(n-2)(d-1)-1$, provided that ℓ is generic (i.e. $\sum \epsilon_{i} \ell_{i} \neq 0$ for $\epsilon_{i}= \pm 1$).
(2) If σ is a permutation of $\{1, \ldots, n-1\}$, then $\mathcal{C}_{d}^{n}(\ell)$ and $\mathcal{C}_{d}^{n}(\sigma \ell)$ are diffeomorphic, where $\sigma \ell=\left(\ell_{\sigma(1)}, \ldots \ell_{\sigma(n-1)}, \ell_{n}\right)$.
(3) Each $\mathcal{C}_{d}^{n}(\ell)$ is determined (up to diffeomorphism) by subsets $J \subset\{1, \ldots, n\}$ with the property that:

$$
\sum_{i \in J} \ell_{i}<\sum_{i \notin J} \ell_{i}
$$

Such subsets J are called short.

Moduli Space (Or Polygon Space)

The special orthogonal group $S O(d-1)$ acts on $\mathcal{C}_{d}^{n}(\ell)$ diagonally, leaving the first coordinate fixed. Thus, we can define the moduli space of linkages (or chains) as

$$
\mathcal{M}_{d}(\ell)=\mathcal{C}_{d}^{n}(\ell) / S O(d-1)
$$

Moduli Space (Or Polygon Space)

The special orthogonal group $S O(d-1)$ acts on $\mathcal{C}_{d}^{n}(\ell)$ diagonally, leaving the first coordinate fixed. Thus, we can define the moduli space of linkages (or chains) as

$$
\mathcal{M}_{d}(\ell)=\mathcal{C}_{d}^{n}(\ell) / S O(d-1)
$$

$\mathcal{M}_{d}(\ell)$ is sometimes defined as the polygon space

$$
\mathcal{M}_{d}(\ell)=\left\{\left(z_{1}, \ldots, z_{n}\right) \in\left(S^{d-1}\right)^{n}: \sum_{i=1}^{n} \ell_{i} z_{i}=0\right\} / S O(d)
$$

Moduli Space (Or Polygon Space)

The special orthogonal group $S O(d-1)$ acts on $\mathcal{C}_{d}^{n}(\ell)$ diagonally, leaving the first coordinate fixed. Thus, we can define the moduli space of linkages (or chains) as

$$
\mathcal{M}_{d}(\ell)=\mathcal{C}_{d}^{n}(\ell) / S O(d-1)
$$

$\mathcal{M}_{d}(\ell)$ is sometimes defined as the polygon space

$$
\mathcal{M}_{d}(\ell)=\left\{\left(z_{1}, \ldots, z_{n}\right) \in\left(S^{d-1}\right)^{n}: \sum_{i=1}^{n} \ell_{i} z_{i}=0\right\} / S O(d)
$$

The topology of $\mathcal{M}_{d}(\ell)$?: Quite a lot is known for the case $d=2,3$. The cases $d>3$ are (mostly) still unknown.

Beyond..

Beyond..

Let $v \in V$, an arbitrary vector space and G a (compact) Lie group acting on V. Then we can define the set

Beyond..

Let $v \in V$, an arbitrary vector space and G a (compact) Lie group acting on V. Then we can define the set

$$
N_{G}(\ell)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in G^{n}: \sum_{i=1}^{n} \ell_{i} v^{x_{i}}=0 \in V\right\}
$$

Beyond..

Let $v \in V$, an arbitrary vector space and G a (compact) Lie group acting on V. Then we can define the set

$$
N_{G}(\ell)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in G^{n}: \sum_{i=1}^{n} \ell_{i} v^{x_{i}}=0 \in V\right\}
$$

It can be shown $N_{G}(\ell)$ is a manifold.

Beyond..

Let $v \in V$, an arbitrary vector space and G a (compact) Lie group acting on V. Then we can define the set

$$
N_{G}(\ell)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in G^{n}: \sum_{i=1}^{n} \ell_{i} v^{x_{i}}=0 \in V\right\}
$$

It can be shown $N_{G}(\ell)$ is a manifold. The proof of this relies on a natural map from $N_{G}(\ell)$ to the space

$$
N_{G(v)}(\ell)=\left\{\left(y_{1}, \ldots, y_{n}\right) \in G(v)^{n}: \sum_{i=1}^{n} \ell_{i} y_{i}=0 \in V\right\}
$$

The (compact) Lie group G acts naturally on $N_{G}(\ell)$. Therefore we can define the moduli space $M_{G}(\ell)=N_{G}(\ell) / G$ as

$$
M_{G}(\ell)=\left\{\left(x_{1}, \ldots, x_{n-1}\right) \in G^{n-1}: \sum_{i=1}^{n-1} \ell_{i} v^{x_{i}}=\ell_{n} v\right\}
$$

The (compact) Lie group G acts naturally on $N_{G}(\ell)$. Therefore we can define the moduli space $M_{G}(\ell)=N_{G}(\ell) / G$ as

$$
M_{G}(\ell)=\left\{\left(x_{1}, \ldots, x_{n-1}\right) \in G^{n-1}: \sum_{i=1}^{n-1} \ell_{i} v^{x_{i}}=\ell_{n} v\right\} .
$$

The behaviour of $N_{G(v)}(\ell) / G$ is not so nice.

The (compact) Lie group G acts naturally on $N_{G}(\ell)$. Therefore we can define the moduli space $M_{G}(\ell)=N_{G}(\ell) / G$ as

$$
M_{G}(\ell)=\left\{\left(x_{1}, \ldots, x_{n-1}\right) \in G^{n-1}: \sum_{i=1}^{n-1} \ell_{i} v^{x_{i}}=\ell_{n} v\right\} .
$$

The behaviour of $N_{G(v)}(\ell) / G$ is not so nice. But

$$
N_{G(v)}(\ell) / G \cong\left\{\left(y_{1}, \ldots, y_{n}\right) \in G(v)^{n-1}: \sum_{i=1}^{n-1} \ell_{i} y_{i}=\ell_{n} v\right\} / G_{v}
$$

The (compact) Lie group G acts naturally on $N_{G}(\ell)$. Therefore we can define the moduli space $M_{G}(\ell)=N_{G}(\ell) / G$ as

$$
M_{G}(\ell)=\left\{\left(x_{1}, \ldots, x_{n-1}\right) \in G^{n-1}: \sum_{i=1}^{n-1} \ell_{i} v^{x_{i}}=\ell_{n} v\right\}
$$

The behaviour of $N_{G(v)}(\ell) / G$ is not so nice. But

$$
N_{G(v)}(\ell) / G \cong\left\{\left(y_{1}, \ldots, y_{n}\right) \in G(v)^{n-1}: \sum_{i=1}^{n-1} \ell_{i} y_{i}=\ell_{n} v\right\} / G_{v}
$$

So define the G-chain space $\mathcal{C}_{G}(\ell)$ as

The (compact) Lie group G acts naturally on $N_{G}(\ell)$. Therefore we can define the moduli space $M_{G}(\ell)=N_{G}(\ell) / G$ as

$$
M_{G}(\ell)=\left\{\left(x_{1}, \ldots, x_{n-1}\right) \in G^{n-1}: \sum_{i=1}^{n-1} \ell_{i} v^{x_{i}}=\ell_{n} v\right\} .
$$

The behaviour of $N_{G(v)}(\ell) / G$ is not so nice. But

$$
N_{G(v)}(\ell) / G \cong\left\{\left(y_{1}, \ldots, y_{n}\right) \in G(v)^{n-1}: \sum_{i=1}^{n-1} \ell_{i} y_{i}=\ell_{n} v\right\} / G_{v}
$$

So define the G-chain space $\mathcal{C}_{G}(\ell)$ as

$$
\mathcal{C}_{G}(\ell)=\left\{\left(y_{1}, \ldots, y_{n}\right) \in G(v)^{n-1}: \sum_{i=1}^{n-1} \ell_{i} y_{i}=\ell_{n} v\right\}
$$

Examples

Examples

(1) Consider the action of $G=S O(4)$ on $V=\mathbb{R}^{4}$. Then,

$$
H^{*}\left(M_{G}(\ell) ; \mathbb{Q}\right) \cong H^{*}\left(\mathcal{C}_{4}^{n}\right) \bigotimes H^{*}\left(S O(3)^{n-1} ; \mathbb{Q}\right)
$$

Examples

(1) Consider the action of $G=S O(4)$ on $V=\mathbb{R}^{4}$. Then,

$$
H^{*}\left(M_{G}(\ell) ; \mathbb{Q}\right) \cong H^{*}\left(\mathcal{C}_{4}^{n}\right) \bigotimes H^{*}\left(S O(3)^{n-1} ; \mathbb{Q}\right)
$$

(2) Consider the action of $G=S O(4 r)$ on $V=\mathbb{R}^{4 r}$. Then,

$$
H^{*}\left(M_{G}(\ell) ; \mathbb{Q}\right) \cong H^{*}\left(\mathcal{C}_{4 r}^{n}\right) \bigotimes H^{*}\left(S O(4 r-1)^{n-1} ; \mathbb{Q}\right)
$$

Examples

(1) Consider the action of $G=S O(4)$ on $V=\mathbb{R}^{4}$. Then,

$$
H^{*}\left(M_{G}(\ell) ; \mathbb{Q}\right) \cong H^{*}\left(\mathcal{C}_{4}^{n}\right) \bigotimes H^{*}\left(S O(3)^{n-1} ; \mathbb{Q}\right)
$$

(2) Consider the action of $G=S O(4 r)$ on $V=\mathbb{R}^{4 r}$. Then,

$$
H^{*}\left(M_{G}(\ell) ; \mathbb{Q}\right) \cong H^{*}\left(\mathcal{C}_{4 r}^{n}\right) \bigotimes H^{*}\left(S O(4 r-1)^{n-1} ; \mathbb{Q}\right)
$$

(3) If $G=U(d)$ acts on $V=\mathbb{C}^{d}$, then $H^{*}\left(M_{G}(\ell)\right)$ can be expressed in terms of $H^{*}\left(\mathcal{C}_{2 d}^{n}\right)$ and $H^{*}(U(n-1))$.

