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Definition

A pivot category is a category C with a bifunctor ⊗ : C × C → C with

natural isomorphisms αU,V ,W : U ⊗ (V ⊗W )→ (U ⊗ V )⊗W
satisfying a commutative diagram

an object I ∈ C and natural isomorphisms ρU : U ⊗ I → U and
λU : I ⊗ U → U satisfying a commutative diagram.

an object U∗ for each U and morphisms evU : U∗ ⊗ U → I and
πU : I → U ⊗ U∗ and is such that the contravariant functor U 7→ U∗

is an anti-equivalence of categories.
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Suppose we had a family of natural isomorphisms RU,V : U ⊗ V → V ⊗ U
for each pair of objects U,V . Then we could label each strand with an
object in C and define:

V U

U V

= RU,V

= πU = evU

Then we can define a link invariant by colouring each strand with an
object in C and reading the map from bottom to top as a map I → I . The
element of End(I ) will be a link invariant as long as RU,V satisfies the
braid relations.

Jonathan Grant Quantum Invariants of Knots February 20, 2014 3 / 29



Suppose we had a family of natural isomorphisms RU,V : U ⊗ V → V ⊗ U
for each pair of objects U,V . Then we could label each strand with an
object in C and define:

V U

U V

= RU,V

= πU = evU

Then we can define a link invariant by colouring each strand with an
object in C and reading the map from bottom to top as a map I → I . The
element of End(I ) will be a link invariant as long as RU,V satisfies the
braid relations.

Jonathan Grant Quantum Invariants of Knots February 20, 2014 3 / 29



Definition

The braid group Bn is defined as

〈σ1, . . . , σn | σiσi+1σi = σi+1σiσi+1, σiσj = σjσi if |i − j | > 1〉

=

=
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becomes

I // V ∗ ⊗ V ⊗ V ⊗ V ∗
1⊗R3⊗1 // V ∗ ⊗ V ⊗ V ⊗ V ∗ // I
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So how do we find pivot categories? One of the most general
constructions is from the representation theory of Hopf algebras

Definition

A Hopf algebra A over a commutative ring k is a k-module equipped with
k-module maps m : A⊗k A→ A, η : k → A, ∆ : A→ A⊗k A, ε : A→ k
and S : A→ A satisfying various associativity and coassociativity axioms,
and so that the algebra and coalgebra structures are compatible.

The category of A-modules form a pivot category, with I = k. If V ,W are
A-modules, then V ⊗W is an A-module with x · (v ⊗ w) = ∆(x)(v ⊗ w).
Also, V ∗ is an A-module with (x · φ)(v) = φ(S(x)v).
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Note that the canonical k-module maps V ∗ ⊗ V → k and k → V ⊗ V ∗

commute with the action of A, but in general the canonical maps
V ⊗V ∗ → k and k → V ∗ ⊗V do not. Also note that we could also define
a dual by using S−1 instead of S . These two duals will be isomorphic as
long as the automorphism S2 is inner, ie. there exists invertible u such that

S2(a) = uau−1

for all a ∈ A. In this case, the map ξ 7→ u−1ξ between the two kinds of
dual commutes with the action of A. In this case, we also have V ∗∗ ∼= V .
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Definition

The universal enveloping algebra U(g) of a Lie algebra g is a quotient of

T (g) = ⊕ng
⊗n

by the two-sided ideal generated by x ⊗ y − y ⊗ x − [x , y ].

This can be made into a Hopf algebra with

∆(x) = x ⊗ 1 + 1⊗ x , S(x) = −x , ε(x) = 0

for x ∈ g. It is then clear that a U(g)-module is equivalent to a
representation of g.
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Unfortunately, if V is a finite-dimensional representation of a simple Lie
algebra g, the only morphisms V ⊗ V → V ⊗ V are the identity and the
map that interchanges the two tensor factors.
This means that the square of RV ,V is the identity, so the same map is
associated to a positive crossing or a negative crossing. So every knot is
assigned the same invariant.
The problem is the cocommutativity of ∆: if we didn’t have ∆op = ∆,
then the flip map wouldn’t be a morphism of U(g)-modules, so there
might be a non-trivial map instead.
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The problem of turning commutative things into non-commutative things
(or cocommutative things into non-cocommutative things) has been
studied by algebraic geometers, quantum physicists and others.

Definition

A deformation of a Hopf algebra (A, η, µ, ε,∆, S) over a field k is a
topological Hopf algebra (Ah, ηh, µh, εh,∆h,Sh) over the ring k[[h]] such
that

Ah is isomorphic to A[[h]] as a k[[h]]-module

µh ≡ µ mod h, ∆h ≡ ∆ mod h.
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Theorem

If g is semi-simple, every deformation of U(g) is isomorphic to U(g)[[h]] as
an algebra. Moreover, if g is simple, every cocommutative deformation of
U(g) is trivial.

So we may restrict our attention to the ‘usual’ algebra structure, but the
coalgebra structure must be changed.
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The standard deformation Uh(sl(2)) is generated by {H,X+,X−} with
relations

[H,X+] = 2X+, [H,X−] = −2X−, [X+,X−] =
ehH − ehH

eh − e−h
.

The Hopf algebra structure is given by:

∆h(H) = H ⊗ 1 + 1⊗ H, ∆h(X+) = X+ ⊗ ehH + 1⊗ X+

∆h(X−) = X− ⊗ 1 + e−hH ⊗ X−

Sh(H) = −H, Sh(X+) = −X+e−hH , Sh(X−) = −ehHX−

εh(H) = εh(X+) = εh(X−) = 0

Jonathan Grant Quantum Invariants of Knots February 20, 2014 12 / 29



The standard deformation Uh(sl(2)) is generated by {H,X+,X−} with
relations

[H,X+] = 2X+, [H,X−] = −2X−, [X+,X−] =
ehH − ehH

eh − e−h
.

The Hopf algebra structure is given by:

∆h(H) = H ⊗ 1 + 1⊗ H, ∆h(X+) = X+ ⊗ ehH + 1⊗ X+

∆h(X−) = X− ⊗ 1 + e−hH ⊗ X−

Sh(H) = −H, Sh(X+) = −X+e−hH , Sh(X−) = −ehHX−

εh(H) = εh(X+) = εh(X−) = 0

Jonathan Grant Quantum Invariants of Knots February 20, 2014 12 / 29



The standard deformation Uh(sl(2)) is generated by {H,X+,X−} with
relations

[H,X+] = 2X+, [H,X−] = −2X−, [X+,X−] =
ehH − ehH

eh − e−h
.

The Hopf algebra structure is given by:

∆h(H) = H ⊗ 1 + 1⊗ H, ∆h(X+) = X+ ⊗ ehH + 1⊗ X+

∆h(X−) = X− ⊗ 1 + e−hH ⊗ X−

Sh(H) = −H, Sh(X+) = −X+e−hH , Sh(X−) = −ehHX−

εh(H) = εh(X+) = εh(X−) = 0

Jonathan Grant Quantum Invariants of Knots February 20, 2014 12 / 29



The standard deformation Uh(sl(2)) is generated by {H,X+,X−} with
relations

[H,X+] = 2X+, [H,X−] = −2X−, [X+,X−] =
ehH − ehH

eh − e−h
.

The Hopf algebra structure is given by:

∆h(H) = H ⊗ 1 + 1⊗ H, ∆h(X+) = X+ ⊗ ehH + 1⊗ X+

∆h(X−) = X− ⊗ 1 + e−hH ⊗ X−

Sh(H) = −H, Sh(X+) = −X+e−hH , Sh(X−) = −ehHX−

εh(H) = εh(X+) = εh(X−) = 0

Jonathan Grant Quantum Invariants of Knots February 20, 2014 12 / 29



Since Uh(sl(2)) is not cocommutative, the flip map is no longer a
morphism of representations. However, there is still a relationship between
∆h and ∆op

h .

Theorem

The element Rh ∈ Uh(sl(2))⊗̂Uh(sl(2)) defined by

Rh =
∞∑
n=0

An(h)e
1
2
h(H⊗H)(X+)n ⊗ (X−)n

is invertible and satisfies

∆op
h (a) = Rh∆h(a)R−1h

for all a ∈ Uh(sl(2)).

We call Rh the universal R-matrix.
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Letting R12
h = Rh ⊗ 1 ∈ Uh(sl(2))⊗̂3 etc., we have

Theorem

R12
h R13

h R23
h = R23

h R13
h R12

h

in Uh(sl(2))⊗̂3.

Theorem

If uh = µ(S ⊗ 1)(σRh), then

S2(a) = uhau−1h

for all a ∈ Uh(sl(2)). Also, if we let vh = e−hHuh, then vh is central and

v2
h = uhS(uh).
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Definition

For any Lie algebra g associated to a symmetrisable Cartan matrix
(aij)i ,j=1,...,n, Uh(g) is defined as the algebra over C[[h]] topologically
generated by Hi ,X

+
i ,X

−
i for i = 1, . . . , n subject to

[Hi ,Hj ] = 0, [Hi ,X
±
j ] = ±aijX

±
j

X+
i X−j − X−j X+

i = δi ,j
edihHi − e−dihHi

edih − e−dih

1−aij∑
k=0

(−1)k
[

1− aij
k

]
edi h

(X±i )kX±j (X±i )1−aij−k = 0.
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Theorem

Uh(g) becomes a topological Hopf algebra with

∆h(Hi ) = Hi ⊗ 1 + 1⊗ Hi , ∆h(X+
i ) = X+

i ⊗ edihHi + 1⊗ X+
i

∆h(X−i ) = X−i ⊗ 1 + e−dihHi ⊗ X−i

and

Sh(Hi ) = −Hi , Sh(X+
i ) = −X+

i e−dihHi , Sh(X−i ) = −edihHi X−i

εh(Hi ) = εh(X±i ) = 0

There are also analogous elements Rh, uh and vh in this case.
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The classification of finite-dimensional representations of Uh(g) is no
harder than that of U(g).

Lemma

If Vh is a representation of Uh(g), then Vh/hVh is a representation of
U(g). If V is a representation of U(g), then V [[h]] is a representation of
Uh(g). If the representations are finite-dimensional, these operations are
mutually inverse, and send indecomposable representations to
indecomposable representations.

In other words, the category of U(g) representations is equivalent to the
category of Uh(g) representations (as long as we resetrict to
finite-dimensional and free representations).
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Let ρ : Uh(g)→ End(V ) be a representation. As we remarked before, in
general the map V ⊗ V ∗ → k is not a morphism of Uh(g)-modules.
However, since we have an element v−1h uh with S2(a) = v−1h uhau−1h vh we
get V ∼= V ∗∗, so we could consider the map

V ⊗ V ∗ → V ∗∗ ⊗ V ∗ → k .

An element f ∈ End(V ) ∼= V ⊗ V ∗ is mapped to trace(ρ(v−1h uh)f ).

Definition

The quantum trace trq is defined as

trq(f ) = trace(ρ(v−1h uh)f ).

The quantum dimension dimq(V ) of V is defined as

dimq(V ) = trq(1V ) = trace(ρ(v−1h uh)).
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Quantised universal enveloping algebras usually appear in the literature in
a simplified form:

Definition

The associative algebra Uq(sl(2)) over C(q) is generated by E ,F ,K ,K−1

with relations

KK−1 = K−1K = 1, KE = q2EK , KF = q−2FK

EF − FE =
K − K−1

q − q−1
.

This is related to Uh(sl(2)) by E = X+, F = X−, q = eh, and K = ehH .
Another technical advantage to this is we can specialise q to any complex
number, which we could not do with Uh.
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The Hopf algebra structure becomes

∆(E ) = E ⊗ K + 1⊗ E , ∆(F ) = F ⊗ 1 + K−1 ⊗ F

∆(K ) = K ⊗ K

S(E ) = −EK−1, S(F ) = −KF , S(K ) = K−1

ε(E ) = ε(F ) = 0, ε(K ) = 1.
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The simplified algebra no longer has all the structure of Uh(sl(2)), but we
can still formally write

R = qH⊗H/2
∞∑
n=0

qn(n−1)/2(q − q−1)n

[n]!
En ⊗ F n

u = q−H
2/2

∞∑
n=0

q3n(n−1)/2 (q − q−1)n

[n]!
F nK−nEn

v = q−H
2/2

∞∑
n=0

q3n(n−1)/2 (q − q−1)n

[n]!
F nK−n−1En
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Let V = 〈v−, v+〉 be the 2-dimensional representation of Uq(sl(2)). This is
defined by

E (v−) = v+,F (v−) = 0,K (v−) = q−1v−

E (v+) = 0,F (v+) = v−,K (v+) = qv+.

In fact, the element v−1u acts the same as K here, so

dimq(V ) = q + q−1

Hence the invariant associated to the unknot is q + q−1 in this case.
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The R-matrix in this case acts on the basis
〈v+ ⊗ v+, v+ ⊗ v−, v− ⊗ v+, v− ⊗ v−〉 of V ⊗ V as

q
3
2


q−1 0 0 0

0 0 q−2 0
0 q−2 q−1 − q−3 0
0 0 0 q−1


and the element v acts as multiplication by q−3/2.We therefore see that

q
1
2 R − q−

1
2 R−1 = (q − q−1)1V⊗V

and that a twist of a strand is multiplication by q−3/2.
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and that a twist of a strand is multiplication by q−3/2.
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We can turn this from a framed invariant to a genuine knot invariant by
multiplying R by q−3/2. Then a twist of a strand is just the identity, and

q2R − q−2R−2 = (q − q−1)1V⊗V .

This is exactly the skein relation for the Jones polynomial.
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A special feature of V is that V ∼= V ∗ via the map

f : V → V ∗ : v+ 7→ v∗−, v− 7→ −q−1v∗+.

This means that upward-oriented strands are assigned the same colouring
as downward-oriented strands (ie. the Jones polynomial is an invariant of
unoriented knots). We can interpret cups and caps as

= (1⊗ f −1) ◦ πV : C(q)→ V ⊗ V

= ev ◦(f ⊗ 1) = trq ◦(1⊗ f ) : V ⊗ V → C(q)

Then the map associated to an unoriented circle is multiplication by
−q − q−1.
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By explicit computation, we see that the R-matrix acts in the same way as

q
1
2 + q−

1
2

which is exactly what the Kauffman bracket associates to a crossing.
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Why we are interested in quantum invariants of knots:

Very little is known about them: even in the case of the Jones
polynomial it is unknown if the invariant detects the unknot.

They may contain some topological information about 3- or
4-manifolds

Quantum invariants generally seem to be fairly strong invariants

Every quantum invariant can be categorified.
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Khovanov homology associates to every knot K a bigraded abelian group
Khi ,j(K ) so that

J(K ) =
∑
i ,j

(−1)iqj rank Khi ,j(K ).

The advantage of this is that Kh(K ) is a stronger invariant of knots, gives
us access to methods in homological algebra, and also that Kh(K ) is
functorial: for any cobordism Σ : K → K ′, there exists a map
Kh(K )→ Kh(K ′). Using this, it is possible to extract a lower-bound for
the slice-genus of a knot using the Rasmussen s-invariant.
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Theorem (Webster, 2010)

For any simple Lie algebra g and representation V , there is a homology
theory Hg,V of bigraded vector spaces so that∑

i ,j

(−1)iqj dim H i ,j
g,V

is the quantum polynomial invariant of K associated to (g,V ).
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