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1 History and Introduction
Surreal numbers were created by John Horton Conway (of Game of Life fame), as a greatly
simplified construction of an earlier object (Alling’s ordered field associated to the class of all
ordinals, as constructed via modified Hahn series). The name surreal numbers was coined by
Donald Knuth (of TEX and the Art of Computer Programming fame) in his novel ‘Surreal
Numbers’ [2], where the idea was first presented.

Surreal numbers form an ordered Field (Field with a capital F since surreal numbers aren’t a
set but a class), and are in some sense the largest possible ordered Field. All other ordered fields,
rationals, reals, rational functions, Levi-Civita field, Laurent series, superreals, hyperreals, . . . ,
can be found as subfields of the surreals. The definition/construction of surreal numbers leads to
a system where we can talk about and deal with infinite and infinitesimal numbers as naturally
and consistently as any ‘ordinary’ number. In fact it let’s can deal with even more ‘wonderful’
expressions

∞− 1, 1
2∞,

√
∞, 1
∞
, . . .

in exactly the same way1.
One large area where surreal numbers (or a slight generalisation of them) finds application is

in the study and analysis of combinatorial games, and game theory. Conway discusses this in
detail in his book ‘On Numbers and Games’ [1].

2 Basic Definitions
All surreal numbers are constructed iteratively out of two basic definitions. This is an wonderful
illustration on how a huge amount of structure can arise from very simple origins. To start with
you should forget everything you know about numbers, inequalities, addition, et cetera, and make
the following definition.

Definition 2.1. A surreal number x is a pair of sets, the left set XL and the right set XR, of
previously created surreal numbers, such that no element r ∈ XR of the right set is to be ≤ any
element ` ∈ XL of the left set, i.e. ¬∃` ∈ XL ∃r ∈ XR (r ≤ `). (This requirement means that x
is well-formed.)

Write x ≡ {XL | XR } to mean x is given by this particular presentation, for many different
presentations can lead to the same surreal number value.

And to make sense of this we need the definition of ≤, which is as follows

Definition 2.2. For two surreal numbers x ≡ {XL | XR } and y ≡ { YL | YR }, we say x ≤ y iff
1You should write ω instead of ∞, but that spoils the fun.
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• y is not ≤ any element of XL, i.e. ¬∃x` ∈ XL (y ≤ xi), and
• no element of YR is ≤ x, i.e. ¬∃yr ∈ YR (yr ≤ x).

Example 2.3. For for example, forgetting that you’ve forgotten everything, and pretending that
some of the ordinary numbers we know are surreal numbers, then following is another surreal
number

{ 1, 2, 7 | 9, 10, 12 } ,

since nothing in XR is ≤ anything in XL.
But this is not a surreal number

{ 1, 2, 7 | 6, 8, 10 } ,

since xr = 6 ∈ XR, x` = 7 ∈ XL and xr = 6 ≤ x` = 7; nor is

{ 1, 2, 7 | 7, 8, 10 } ,

since xr = 7 ∈ XR, x` = 7 ∈ XL and xr = 7 ≤ x` = 7.
And for ≤:

3 = { 1, 2 | 5, 6 } ≤ 7 = { 4, 5, 6 | 8 }

since:

• 7 is not ≤ than any element of { 1, 2 } and
• no element of { 8 } is ≤ 3.

These definitions are very circular, but each time we apply them, we always move to a ‘simpler’
condition to check as we move to previously created surreal numbers. This means eventually we
get to statements we can check.

3 The first surreal number
So how can we start making surreal numbers? Both of these definitions are very circular, so
where do we start?

The first definition says that a new surreal number must be a pair of sets of previously created
surreal numbers. At this point we don’t know any surreal numbers, but the empty set is a
perfectly good set, so the first surreal number we can possibly create is

{ | } .

But before we claim victory at creating a surreal number, we need to check that this is well
formed.

Proposition 3.1. The surreal number X ≡ { | } is well formed.

Proof. To show X is well formed, we need to show that no element of XR is ≤ any element of XL.
This only fails if there is some element of XR which is ≤ some element of XL. But as XR = ∅
contains no elements, this doesn’t fail. Hence { | } is well formed.

For the moment we’ll write 0 ≡ { | } for this. This name can be justified later. To keep track
of the order in such we have created the various surreal numbers, we say this surreal number is
created on day zero.

We can prove the following fact about 0
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Theorem 3.2. 0︸︷︷︸
x

≤ 0︸︷︷︸
y

Proof. We need to show that y = 0 is not ≤ any element of XL = ∅, and that no element of YR

is ≤ x = 0.
The first fails only if y = 0 is ≤ some x` ∈ XL, but XL is empty, so there is no such x` and it

doesn’t fail.
Similarly, the second only fails some yr ∈ YR is ≤ x = 0, but YR is empty, so there is no such

yr and it doesn’t fail.

4 More surreal numbers
Now we have the following new pairs of surreal numbers

{ 0 | } , { | 0 } , { 0 | 0 } .

Since 0 ≤ 0, the last one isn’t well formed, so isn’t a surreal number. But as before, the others
are surreal numbers.

So on day one we have created

1 ≡ { 0 | }
−1 ≡ { | 0 }

Again these names can be justified later. We can prove

Theorem 4.1. 0 ≡ { | } ≤ 1 ≡ { 0 | }.

Proof. We need to prove that 1 is not ≤ any element of XL = ∅, and no element of YR = ∅ is ≤
0. Both relevant sets are empty, so this is true.

And similarly −1 ≤ 1 and −1 ≤ 0. We can also prove

Theorem 4.2. ¬ 1 ≤ 0

Proof. 1 ≤ 0 would mean 0 is not ≤ any element of XL = 0, and no element of YR = ∅ is ≤ 1.
But take x` = 0 ∈ XL, then 0 ≤ x`, so the first fails, giving 1 6≤ 0.

We can introduce some shorthand notation for convenience. Say x = y iff x ≤ y and y ≤ x.
Say x 6= y iff ¬x = y. Say x < y iff x ≤ y and x 6= y. Then from the above, we’ve got

0 = 0, 0 < 1, 0 6= 1, and so on.

Exactly what you would expect from −1, 0, 1.
On the second day we get the a lot more numbers, the new ones are

2 ≡ { 1 | }
1
2 ≡ { 0 | 1 }

1
2 ≡ { −1 | 1 }
−2 ≡ { | −1 } .

(Still names which need justifying!)
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We get a couple of different representations for numbers we already know, such as

0 = { −1 | 1 } = { −1 | } = { | 1 } ,

these equalities follow from the definitions, but finally require a non-vacuous statement to be
proven.

Proving 0 ≡ { | } ≤ { −1 | 1 } finally involves proving a non-vacuous statement. We need to
prove that { −1 | 1 } is not ≤ any member of XL = ∅, and that no element of YR = { 1 } is ≤ 0.
The first is vacuous, but the second is true since ¬ 1 ≤ 0 was shown above.

5 Some general theorems about surreal numbers
We can see the beginnings of a pattern in which new numbers are created on each day. The
pattern would become more obvious if we looked at day 3, but for time I’ll just tell you:

Theorem 5.1. On day n, we create n = { n− 1 | }, and −n = { | −(n− 1) }, and all midpoints
between previously existing surreal numbers.

This means on finite days we create only integers, and dyadic fractions.
We can also see some structure on the values a surreal number represent. The number

x ≡ {XL | XR } is always between all values in XL and XR. More precisely

Theorem 5.2. The value of x ≡ {XL | XR } is the earliest-created surreal y such that y < every
element of XR, and every element of XL is < y.

For example

{ −2 | 1 } = 0, { −2,−1, 0 | 2 } = 1 ,

Once we move to allowing infinite sets, on day ω, we can write down

1
3 =

{
0, 1

4 ,
5
16 ,

21
64 . . .

∣∣∣∣ 1, 1
2 ,

3
8 ,

11
32 , . . .

}
The left hand set is all dyadic fractions < 1

3 , and the right hand set is all dyadic fractions > 1
3 .

(This is very similar to the Dedekind cut definition of the real numbers, especially if we look for
the surreal number with value π.)

I’m not going to prove these theorems, but I’ll give an indication of how things can be proven
for all surreal numbers. The idea is a version of induction. Prove the result for { | }. Then
assuming the result is true for the parents of x = {XL | XR } (that is the elements of XL and
XR), show that the result is true for x.

6 Addition, and justifying the names
Finally, once we introduce the notion of addition of surreal numbers, we can justify the names we
have given to these surreal numbers.

Definition 6.1. For surreal numbers x ≡ {XL | XR } and y ≡ { YL | YR }, we define

x+ y ≡ {XL + y, x+ YL | XR + y, x+ YR } ,

where number + set means add number to each element of set.
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We should check that this gives a well-formed surreal number. It does. Moreover, does it
make sense as addition? Certainly we can justify it somewhat by noting that since x lies between
XL, XR, and y between YL, YR, the sum lies between the left hand elements and the right hand
elements.
Theorem 6.2. 1 + 1 = 2

Proof. { 0 | } + { 0 | } = { 0 + 1, 1 + 0 | ∅+ 1, 1 + ∅ } = { 1 | }, where we’ve made use of a
simpler result that we should have proven beforehand 0 + 1 = 1 + 0 = 1.

So what we labelled two is justified. Similarly we can show the name 1
2 is justified:

Theorem 6.3. 1
2 + 1

2 = 1

Proof. { 0 | 1 }+{ 0 | 1 } =
{

0 + 1
2 ,

1
2 + 0

∣∣ 1
2 + 1, 1 + 1

2
}
. Both sets here contain simpler elements

(the day sum is ≤ 3 compared to the original 4), so unspooling the definition further gives
=
{ 1

2
∣∣ 1 1

2
}
. Now the earliest created surreal number between the left and right sets is 1.

7 To infinity and beyond. . .
I want to finish this with some examples of the fun we can have by using infinite sets as the left
and right pairs of surreal numbers. We’ve already seen that to get 1

3 we need infinite left and
right sets, and we can similarly get all other irrational numbers.

But what if we use the following

{ 0, 1, 2, 3, . . . | }

This is a surreal number greater than every positive integer, so shall we call it ∞? The infinity it
describes is the ordinal ω.

But we also have
ε =

{
0
∣∣∣∣ 1, 1

2 ,
1
3 ,

1
4 , . . .

}
This is greater than 0, but smaller than every real number. It’s an infinitesimal! If we have
defined multiplication one could prove that εω = 1.

But what about
{ 0, 1, 2, 3, . . . | ω } ?

This should be greater than every positive integer, but less than infinity. It turns out this is
accurately described as ω − 1, since

(ω − 1) + 1 = { ω − 1 + {0}, {0, 1, 2, . . .}+ 1 | ω − 1 + ∅, {ω}+ 1 }
= { ω − 1, 1, 2, 3, . . . | ω + 1 }
= ω

It gets weirder, but I’ll leave you with some final examples
ω

2 = { 0, 1, 2, 3, . . . | ω, ω − 1, ω − 2, ω − 3, . . . } ,

since you can show ω
2 + ω

2 = ω, and
√
ω =

{
0, 1, 2, 3, . . .

∣∣∣ ω, ω2 , ω3 , ω4 , . . . }
since the definition of multiplication leads to

√
ω ×
√
ω = ω.

This is to say nothing of pseudo-numbers, the things we get by dropping the requirement for
well-formedness, and how they fit into the picture.
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