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Matrix generalizations.

In Section 1, we discuss a typical spectral
P-S problem in detail: its setting in Sobolev
Lo-spaces, the resolvent set, the smoothness of
solutions, and the properties of eigenvalues and
eigenfunctions in the cases of a Lipschitz or
more smooth boundary. In Sections 26, we

1The investigation was supported by the Russian
Foundation for Basic Research.
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briefly describe similar problems in other situ-
ations.

We use the following notation.

O = Qt: a bounded domain in R", n > 2.

The boundary I' = 0f2 is Lipschitz.

0; = 0/0x;.

v = v(x): the exterior unit normal at x € T
(it exists a.e.).

We consider the equation Lu = 0 in {2, where

Lu:= | — Z O;aik(x)0k + ... Ju(z) — wu(z).

7,k

Here a;i(x) = ag;(x) are real, bounded and
measurable or, if necessary, more smooth; ...
are lower-order terms, in general with variable
coefficients;

w=oc4+1ir, 7T>0; o>0if7=0.

The principal symbol: a(z,&) = > ajr(x)€;&k.
We assume that it is elliptic:

a(z, &) > cl¢]®, ¢>0.



The conormal derivative:

ZVJ a]k (:1: c F).

It is the normal derivative 0, for the Helmholtz
equation Au + w?u = 0.

The Dirichlet problem (D): u™ = g.
The Neumann problem (N): 9, ut = h.

Assume w to be such that each of the prob-
lems (D) and (N) has a unique solution.

1. The simplest problems in bounded
domains. We consider the problem in {2 with
boundary condition

ut = M\0, u”. (1)

Here and below, we denote by A the spectral
parameter. We write this equation in the form
Ny = Ap, where ¢ = 9, u™ and N is the op-
erator

N=N":9,u" = u —u'; (2)



it i1s called the Neumann-to-Dirichlet operator.
The inverse operator D = DT = N~! is called
the Dirichlet-to-Neumann operator, and both
are called the Poincaré—Steklov operators. If T

and coefficients are C'°°, then N is an elliptic
PSDo of order —1.

To be more precise, we need the Sobolev Lo-
spaces: u € H'5(Q), ut € HY/2+5(I),

O, ut € H~1/2s(T), |s| <1/20r <1/2.

(If T is Lipschitz, then H*(I") are defined only
for [t| < 1, but even the trace ut of u € H3/2(Q)
can lie outside H*(T").)

The main form:
By (1, v) = / S aj1(2) Oy u(2)0;75(x) da.
Q

The conormal derivative is actually defined in
H~1/2+3(T) for u € H'**(Q) by the variational
rdentity

Bofu,0) + [ (=P vde = @, v o
0
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for all v in H'=*(Q), |s| < 1/2. Here (-, -)or is
the usual inner product in Lo(I") extended to
H—1/2—|—3(F) > H1/2_S(F).

Classical results for s = 0. If L is formally
self-adjoint, then (D) has a unique solution in
H'(Q) for ut € H'/2(I') and all w except some
real w; — +o0o. The same is true for (N),
O, ut € H V2, w # @, — +oo. Then
N exists and is invertible as an operator from
H=Y2(T") to HY2(T). If L is non-self-adjoint,
then the exceptional w can be nonreal, their
real parts tend to +oo.

Smoothness: if D and N define isomorphisms
between H'/2%5(I") and H~1/2%5(T") for s = 0,
then the same is true for |s| < 1/2.

< Rellich identities, Necas (1967); Savaré
(1998), a new approach, for |s| < 1/2.

Now we discuss some spectral properties of
N. Denote by Ly the principal part of L. As-
sume for the beginning that L = Lo+72%, 7 > 0.

Remark (B. Pal’tsev, 1996). Then the form
(¢, ¢>—1/2,F — (N¢7¢)0,F (3)
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is an inner product in H~Y2(I"), the corre-
sponding norm being equivalent to the usual
one in this space. Here (-,-)o.r is extended to
HY2(T) x HY2(T).

In this case, N is a compact operator with
range H1/2(T), self-adjoint with respect to this
inner product, with positive eigenvalues.

In H~1/2+5(T"), introduce the inner products

(@, V) _1/24sT = (NT 25, Y)o,r

for —1/2 < s < 3/2. In particular, for s = 1/2,
this is the usual inner product in Lo(I"), and
the restriction of N to this space remains to
be a compact self-adjoint operator. The eigen-
functions belong to H'(T'), and it is possible to
compose an orthogonal basis of them in all these
spaces with respect to the inner products just
indicated.

For other low-order terms in L, we use per-
turbation argument. The operator N is either
self-adjoint or a weak perturbation of a self-adjoint
operator. In the last case, the root functions



are complete in the same spaces. From the root
functions, it is possible to compose an Abel-
Lidskii basis with parentheses if n > 3 and even
a Riesz basis with parentheses if n = 2.

For the eigenvalues \;(IN) numbered in non-
increasing order, in general, we have

liminf ;5% (=Y >0, limsup ;5" Y < .

If T is C* and coeficients ajx(x) are continuous,
then

Aj(N) = aj 77D o(m 1) (4

where « is calculated in terms of a(x,£) on T’
(Sandgren, 1955, the variational approach). If
the boundary and the coefficients are C'°°, then
the remainder term is O(j~2/(»=1) (Hérmander,

1968).

Theorem. The asymptotic formula (4) re-

mains true for C! surfaces and continuous co-
efficients.

Additional references and more general re-
sults will be indicated in Section 4.



The eigenvalue asymptotics is preserved in
the non-self-adjoint case.

Simultaneously, we have described the spec-
tral properties of D = N~1'. It is an operator
with compact resolvent.

2. Exterior problems. For simplicity, as-
sume that n > 3. Denote by = the com-
plement to . We assume that L coincides,
say, with the Helmholtz operator sufficiently far
from the origin and impose the corresponding
radiation condition on the solutions if w > 0
and decay conditions for other w. In 7, we
assume the solvability and uniqueness for the
exterior problems (D) and (N) for given w; this
is true for the Helmholtz equation for all w.

For the equation Lu = 0 in 27, we consider
the spectral problem with boundary condition

u~ + A0, u” =0. (5)

The corresponding N-to-D and D-to-N opera-
tors are

N :0,,u —~u(inQ )~ —u" (6)
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and D~ = (N7)~!. Equation (5) can be writ-
ten in the form N~ ¢ = Ap. The spectral prop-
erties of N~ are similar to those of NT.

3. Transmission problems. For the equa-
tion Lu = 0 in Q1T UQ ™, we consider two spec-
tral problems with transmission conditions on

I'. First,
um=u", uF=X0,ut -0, u"). (7
The corresponding N-to-D operator is
A:0,ut =0, u” —u(inQF) —»ut. (8)
Second,
O, ut =0, u", ut—u" =X, ut. (9)
The corresponding D-to-N operator is
C:ut—u” —u(inQF) —» 9, uvE. (10
The equations on I' are

Ap=XAp and o= ACq, (11)
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where ¢ = 0, u™ — 0, ,u” and ¥ = ut —u".
The spectral properties of these new operators
are similar to those of N and D™ .

Such problems for the Helmholtz equation
were proposed by Soviet physicists Katsenelen-
baum, Sivov, and Voitovich about 40 years ago.
At that time, it was an event to find out that
the corresponding operators N*, A and C on
smooth boundaries are elliptic PSDo with good

spectral properties even if they are non-self-
adjoint (Agr., 1977).

Transmission conditions arise in diffraction
problems on a half-transparent surtace.

Note that if, for simplicity, the coeflicients in
L are constant and F(z) is the fundamental so-
lution satistying our conditions at infinity, then
all these operators are expressed in terms of the
surface potentials. (For the Helmholtz equation
in R?, E(z) = el /47|z].)

Namely, denote by A the restriction of the
single layer potential to I', by B the direct value
of the double layer potential on I', and by C the
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conormal derivative of the double layer poten-
tial on ' (its values from both sides of I' are
equal; C is known as the hypersingular opera-
tor):

Ap(z) = / E(z — y)p(y) dS,

Bo(z) = / Oy, ) B — y)o(y) dS,

Co(x) = 0y, (2) /F Ou, () E(x —y)p(y) dS.

Then
A=A N==BFxi)'A C=cC.

In the harmonic analysis, a new approach
is developed to surface potentials giving more
deep understanding of these operators in Lip-
schitz domains.

4. Mixed problems. Assume that the
Lipschitz boundary I' is divided into two open
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parts I'; and I'y by a Lipschitz (n—2)-dimensional
surface . For the equation Lu = 0 in (), we
consider, first, two non-spectral problems with
boundary conditions

(I) ut =g on T'y, O, u™ =0 on I'y
and

(IT) 9,,ut =h on T';, ut =0 on Is.

Second, we consider two spectral problems
with boundary conditions

(I ut = A9y, ut on I'y, 0, ut =0 on Ty
and

(Il') ut = Xd,, ut on I'1, ut =0 on Is.

The corresponding literature is very rich.

More general mixed problems can be consid-
ered, cf. Sandgren (1955), Pal’tsev (1996), but
for the problems just indicated we add some
details.

As before, we assume that each of problems
(D) and (N) in Q has a unique solution. We
introduce the Poincaré—Steklov operators

N, :0, u (=0 on I'y) = ur—ut|p, (12)
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and
D,,:u" (=0 on I'y) = urr 9, ut|r, (13)

(m means mized). Then problems I and IT are
reduced to the equations

Nmp =9, Dpnt=h, (14)

and problems I’ and II" are reduced to the equa-
tions

Ny = Ap, = ADp9. (15)

Here ¢ = d,,u™ and ¥ = u™, but these func-
tions are zero on I'5. Actually, we have ob-
tained the equations on I'y. More precisely:

We now need more general spaces (|s| < 1,
but we will use s only with |s| < 1/2).

H?*(T'1): restrictions ¢ to I'y of functions v
from H?*(I') with norm inf ||¢||s .

EIS(Fl): functions ¢ from H*(T') supported
in 'y with norm ||¢||s .
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The following properties of these spaces are
well known.

(1) The spaces H*(I'1) and H~*(I';) are mu-
tually adjoint with respect to the extension of
the usual inner product in Lo (T'y).

(2) H*>(['y) ¢ H* (1), H®(T) C H** ()
for s; < s9; the embeddings are compact, and
the left spaces are dense in the right spaces.

(3) The spaces H*(I'y) and H*(I;) can be
identified for |s| < 1/2.

(4) The operators N,,, and D,,, are bounded
in the sense

N, : H=1/2(I'y) —» HY2(I,),

D,, : HY2(I'1) — H~Y2(Iy).

They are invertible if we exclude some real w
but are not mutually inverse. In view of (2) and
(3), our spectral equations N,,0 = Ap, ¥ =
AD,,1Y make sense, but we have to consider
them separately.

Consider problem I. For the beginning, again
assume that L = Lo+ 7%, 7 > 0 . The in-
vertibility of N, is checked by the variational
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approach. In H~1/ 2(I'1), following Pal’tsev, we
introduce the inner product

(@, ¥) 1720, = (N, ¥)or, (16)

extending (-, -)o.r, to HY2(T1) x H~Y/2(Ty).

The operator N,,, in H~/2(I';) has the range
H'/2(T';) and is compact and self-adjoint. Us-
ing its powers, we introduce the inner products

(0, Y)_1/24s 1, = (N'1=25¢, Y)o.r,

for 0 < s < 1. For s = 1/2, this is the usual
inner product in Ly(I'1), and the restriction of
N,, to La(T'1) is self-adjoint in this space. The
eigenfunctions of N,, belong to H'/?(I'1), and
it is possible to compose an orthogonal basis of
them with respect to all these inner products.

For more general low-order terms in L, the
operator IN,, remains to be self-adjoint or is a
weak perturbation of a self-adjoint operator. In
the main, the picture is the same as in the case
of non-mixed problems.
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However, no theorem on smoothness is known
for mixed problems except for the case of bound-
aries of the class C'1'!. For this case, Savaré
proved a theorem (1997) similar to his theorem
(1998) for non-mixed problems in Lipschitz do-
mains. He noted that, apparently, for piecewise-
smooth boundaries the situation is better.

For L = Lo + 72, 7 > 0, the D,,, is an oper-
ator in H~1/2(I'y) with domain HY2(I';) and
compact resolvent. It is selt-adjoint with re-
spect to the inner product

< ¢, ¢ >—1/2,I‘1: (Dr_nlgpa ¢)0,F17 (17)

here we extend (-, -)o.r, to HY2(T)xH=Y2(I).

Fortunately, the operator D! admits a vari-
ational definition. Because of this, the pic-
ture is essentially the same. In particular, the
variational approach to the asymptotics of the
eigenvalues works. We now formulate the cor-
responding results.?

2The end of this section was somewhat revised at
the beginning of October of 2005.



17

Following Sandgren (1955) and Suslina (1985),
we consider more general spectral boundary con-
ditions

put =X, ut on I'y, u™ =0 on I'y. (18)

Here p is a bounded measurable function, for
the beginning nonnegative. The problem is re-
duced to the equation

pD o = M. (19)
The formula

Aji(Dyt) = api =D O3 (20)

m

was proved by Sandgren for C? boundaries and
by Suslina for boundaries piecewise-smooth in
the sense of Hestenes -Whitney (C*° outside
singularities of curvilinear-polyedral type). She
considered more general spectral problems and
applied a deep variational technique elaborated
by M. Birman and M. Solomyak. In both pa-
pers, the coeflicients are assumed to be contin-
uous.
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Returning to (4), note that this formula was
proved by Amosov and Agr. (1996) for Lip-
schitz surfaces that are C*° outside a closed set
of zero measure and C° coefficients.

Theorem. IfT is C' and coefficients ax(x)
are continuous, then formula (20) is true. More-
over, it remains true if I' is O outside a closed
set of zero measure.

In the proof, assuming first that ' is C! and
L = Lo+ 7%, 7 > 0, we reduce the general
case to the case of a domain under the graph of
a positive C! function z,, = ¢(z') defined in a
ball O on the x’-hyperplane. We transform this
domain into a cylinder with ¢(x’) = const and
then apply the result by Suslina. If I' is only
C! outside a closed set of zero measure, then
we additionally use an argument by Suslina.

If p changes its sign, then asymptotic formu-
las for positive and for negative eigenvalues can
be written.

It is possible to consider similar problems in

Q.
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5. Crack type problems. We now con-
sider the case of a non-closed boundary. It was
considered in many papers on systems of elas-
ticity theory, where such a boundary has the
sense of a crack.

We restrict ourselves by the following prob-
lems.

Let I'y be a bounded Lipschitz surface with a
Lipschitz boundary . Assume that the equa-
tion Lu = 0 is fulfilled outside I'y (with our
conditions at infinity), while on I'; the solution
is subordinated to some boundary or transmis-
sion conditions.

The non-spectral conditions on I'y:
I11. Dirichlet conditions u* = g.

IV. Neumann conditions 8, u* = h.

The spectral conditions on I'y:
Ir'. ut =u=, u*=Xo, ut -9, u].
V. 0, ut =98, v, ut—u" =M\, u".

Assuming that I'y is a part of a closed Lip-
schitz surface I', we add the following condi-
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tions on the remaining part I's of I':

since the equation Lu = 0 is fulfilled there.
From now on, the situation is very close to that
in the case of mixed problems, but the roles of
N,, and D,, are played by the analogs of the
operators A and C (i.e., of the single layer po-
tential and hypersingular operator). Namely,
we introduce the operators

A,: 0, ut—0,u (=0 on I'y)
— u (outside T;1) — u¥|p,,
Che: um —u~ (=0 on I'y)

— u (outside I'1) — 8, uT|r,

(ne means nonclosed). They act as follows:

A,.: HY2() = HY*(I,),
Chne: HY?(I1) — H™Y2(Iy).



21

Problems III and IV are reduced to the equa-
tions

A,.o=¢g and C,.¢ = h. (21)

Problems III" and IV’ are reduced to the equa-
tions

A,co=Xp and = \C,.1. (22)

Here the functions ¢ = 9, u™ — 9, u~ and
) = uT —u~ are zero on I's, and we have equa-
tions on I';.

If L = Lo+ 72, 7 > 0, then both operators
are invertible. Further results are similar to
those for our mixed problems. As a byproduct,
we obtain an investigation of the Dirichlet and

Neumann problems with equal data on (Lip-
schitz) T'5.

Note that in the case of smooth boundaries,
the operators A,,. and C,,., as well as N,,, and

D,,, are elliptic PSDo of orders —1 and 1 but
on a manifold I'y with boundary. After initial
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papers by M. Vishik and G. Eskin (1965-73),
such operators were intensively investigated, es-
pecially for systems of elasticity theory, by the
Wiener-Hopf method by many Georgian and
German mathematicians. We mention the pa-
pers by R. Duduchava—D. Natroshvili-E. Shar-
gorodskii (1990) and Duduchava—Wendland (1991).

This approach leads to a construction of a
parametriz. Note that it is possible to give a
more transparent construction for it than in the
general theory of Vishik and Eskin. However,
some smoothness is necessary.

The variational approach, which we use, gives
the results for Lipschitz boundaries. A simpli-
fied version of this part or the talk is in Agr.,
2006 (in print).

6. Generalizations to systems. Now we
consider a system Lu = 0, in which the coeffi-
cients are m X m matrices. The main examples
are the systems of the elasticity theory.

The conormal derivative is a matrix opera-
tor. The principal symbol is assumed to be real,
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symmetric and strongly elliptic:

=Y " ¢i6nan() > clEPE, >0,

where F is the m X m unit matrix. It follows
that the variational approach can be applied to
the Dirichlet problem.

To apply it to the Neumann problem, say, in
(2, we assume that the principal form ®q(u,v)
is coercive on H(Q). In Agr., 2002, some suffi-
cient conditions are indicated suggested by the
Korn inequality.

To formulate the radiation conditions, we as-
sume that the principal symbol does not de-
pend on x in a neighborhood of infinity, impose
some conditions on its eigenvalues and then fol-

low B. Vainberg, 1996. See Agr., 2002.

There is a book by McLean, 2000, devoted to
the variational approach for systems (including
the mixed problems) and to equations on the
boundary.

The Rellich identities work in general only in
one direction: if the Dirichlet data are smooth,
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then the Neumann data are smooth. (For the
Lamé system, they work in both directions.)
However, Savare’s theorem on smoothness (1998)
is extended to systems. See Agr., 2002.

In the main, the spectral results are the same
as for the scalar equation.



