RESOLVENT CONDITIONS FOR PERTURBATIONS

Well-posed Cauchy problem in a Banach space X
u' (t) = Au(t) (& > 0), u(0) =z
A generates a Cp-semigroup {T'(t) : t > 0}, where
w(t) =Tz, T(t) “=" e,

RO A) = (M — A) ! = / T e di

Given B : D(A) — X (always bounded for the graph norm),
when does A 4+ B generate a Cy-semigroup?

Dyson-Phillips series

St)=T(t)+ ) _(V"T)(¢)
(VF)(t) = / Tt BF(s)ds.  F:[0.00) = B(X)

This works for:
e B € B(X) (Phillips)
e Miyadera-Voigt conditions (Schrodinger operators, de-

lay equations):

t
/O |BT(s)zl|ds < qllzll (x € D(A))
where ¢ < 1.

e Desch-Schappacher conditions (population dynamics)
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Resolvent estimates

General Hille-Yosida conditions are not amenable to pertur-
bations.

First-order resolvent conditions are amenable:

R(\, A+ B) = RO\, A)(I — BR(A, A)) ™!

e T contractive, A dissipative, [|[AR(A, A)|| <1 (A > 0).

If B is dissipative with A-bound less than 1, then
A 4 B generates. (Lumer-Phillips)

e T holomorphic, [[AR(\, A)|| < c (ReA > w).
If B has A-bound 0, then A + B generates. (Hille)

If B is A-compact, then A + B generates. (Desch-
Schappacher)



A second-order integral condition

Second-order resolvent conditions are reasonably amenable
to perturbations.

Theorem (Gomilko, Shi-Feng). Suppose that A is closed
and densely defined with o(A) C {A: Re X < 0}, and suppose
that for allz € X and y € X~

Supa/ [(R(a+is, A)’z,y)| ds < oo.
a>0 — 00

Then A generates a bounded Cy-semigroup on X .

Corollary. Suppose that A is closed and densely defined on
a Hilbert space H. Then A generates a Cy-semigroup if and
only if there exists w such that, for all x € H,

Supa/ |R(a +is, A)z||* ds < oo,

a>w —00

Supa/ IR(a+is, A)*z||* ds < co.
a>w — 00

Theorem (Kaiser-Weis; B.). Suppose that A generates
a Co-semigroup on o Hilbert space H, and B : D(A) —
H. Suppose that there exist ¢ < 1 and w such that o(A) C
{ReX <w} and

IBR(A, Al <q,  [[R(A A)Byll <dqllyll  (y € D(A))

whenever Re A > w. Then A+ B generates a Cy-semigroup
on H.



A converse result

Desch and Schappacher showed that their theorem for rel-
atively compact perturbations of holomorphic semigroups
does not apply to any other semigroups:

Theorem. Suppose that A+ B generates a Cy-semigroup T
for every rank-1 operator B : D(A) — X of arbitrarily small
A-norm. Then T is holomorphic.

Sketch of proof. For each B, R(A, A + B) is bounded
on a right half-plane (depending on B). A Baire category
argument implies that AR(\, A) is bounded on a right half-
plane.

The argument can be abstracted. Suppose that
e A is densely defined,
e C:D(A) — X is A-bounded,
e CR(\ A)z is bounded in some region for sufficiently
many z,

e for each B of the form Bx = (Cx,b*)a with ||a]| ||b*| ar-
bitrarily small, A+ B satisfies one of a countable family
of more or less arbitrary resolvent growth conditions in
suitable regions.

Then CR(A, A) is bounded in one of the regions.

Theorem above remains valid if A + B generates a “distri-
bution semigroup” in the sense of Lions.



Cosine functions

Cosine functions are to second-order Cauchy problems as C-
semigroups are to first-order problems. Thus A generates a
cosine function {C(t) : t > 0} if and only if

u'(t) = Au(t) (¢t >0),
u(0) = x,
u'(0) =0

is well-posed. The solutions are given by u(t) = C'(¢)x, and

R(A\?,A) = )\/OO e MC(t) dt (Re A > w).

Example. Let A generate a Cy-group {U(t) : ¢ > 0} and
A = A2. Then A generates a cosine function given by

C(t) = S (U(0) + U(~1).

If A generates a cosine function, then there is a unique “phase
space” W. It B: W — X is bounded, then A + B generates
a cosine function.

If X is a UMD-space, then W = D((wI — A)'/?) for suitable
w. (Fattorini)

Theorem. Suppose that A generates a cosine function, and

let v > % Suppose that, for each B : D((wl — A)Y) = X

of rank-1 and arbitrarily small norm, A + B generates an
(integrated) cosine function. Then A is bounded.



Semigroups and fractional powers

Suppose that A generates a semigroup. Fix v € (0,1) and
assume that, for each B : D((wl — A)7) — X (of rank-1 and
small norm), A + B generates a semigroup. Then
(CP)

|R(a +1s, A)|| = O(]s|™%) as |s| = oo for some/all a;

equivalently,
T(t)(X) C D(A) and || AT ()| = O(tP) as t | 0.
Here « is approximately equal to v and [ is approximately

its reciprocal.

Conversely, suppose that A generates a Cy-semigroup and
satisfies (CP). Let B : D((wl — A)Y) — X be bounded,
where 0 < v < a. Then A + B generates a Cy-semigroup
(via Phillips-Miyadera-Voigt) and also satisfies (CP).

This is also true if X is a Hilbert space, @« = v and B is finite
rank (via Gomilko-Shi-Feng).



Perturbations of differentiable semigroups

A Cy-semigroup T is eventually differentiable if it is norm-
differentiable on (tg, 00) for some tg > 0; equivalently, T'(t)
maps X into D(A) for ¢ > 0; i.e., mild solutions of the
homogeneous Cauchy problem become classical solutions.

T is immediately differentiable if ty = 0.

Phillips asked: If A generates an immediately differentiable
semigroup and B € B(X) is the semigroup generated by
A + B eventually differentiable?

Pazy: T is eventually /immediately differentiable if and only
if ||[R(\, A)|| < C|A\|™ in an exponential region |y| > ce %,
for some/all b > 0.

Hence, Phillips’s question has a positive answer when
|R(A, A)|| — 0 as |Im A\| — oo in an exponential region.

Renardy showed that the answer to Phillips’s question is
negative.

In fact,

A + B generates an eventually differentiable semigroup
for every B € B(X) in a uniform way

if and only if

|IR(X, A)|| — 0 as | Im A| — oo in an exponential region.



Delay equations

Consider the delay differential equation:
(DDE) u' (t) = Au(t) + Puy (¢t > 0), ug = f.
Here,

ut(0) = u(t + 6) (t>0,0 € [—1,0)),
¢:C:=C([-1,0],X),X) — X (bounded)

There is an associated semigroup V® on C generated by Bg:

D(Bg) ={f €C": f(0) € D(A) and f'(0) = Af(0) + @[}
Bof = f'.

Solutions of (DDE) are given by u(t) = (Va(t)f)(0).

Question: When is V3 eventually differentiable, i.e., when do
all mild solutions of (DDE) become classical solutions after
some fixed time?

Theorem. Assume that the semigroup generated by A 1is
immediately differentiable. The following are equivalent:

(1) Vo is eventually differentiable for every ®;
(2) Vg is eventually differentiable when ®(f) = f(—1);
(3) A satisfies (CP).



