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The classical Nevanlinna-Pick interpolation
problem

Problem: Given n points z1, . . . zn in D, and n complex values
w1, . . . ,wn, does there exist a analytic function f : D → D such
that f (zk) = wk, k = 1, . . . ,n?

If we write H∞(D) for the bounded analytic functions on the
disk, we are looking for a interpolating function f in the closed
unit ball of H∞(D) (called the Schur class).

H∞(D) is the multiplier algebra for H 2(D), the analytic
functions on the disk with square summable power series. That
is, for all f ∈ H 2(D) and for any ϕ ∈ H∞(D), the function with
values Mϕf (z) = ϕ(z)f (z) is in H 2(D).
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Solution to the classical Nevanlinna-Pick
interpolation problem

A solution exists ⇐⇒ the matrix(
1− wjw∗k
1− zjz∗k

)
j,k=1,...n

is positive (ie, positive semidefinite).

We call
k(w, z) = (1− zw∗)−1

the Szegő kernel. Write k : D → C as k(z)(·) = k(·, z).
k is an example of a reproducing kernel: for f ∈ H 2(D),

〈f , k(z)〉H 2(D) = f (z).

A straightforward calculation shows M ∗
ϕk(z) = ϕ(z) ∗k(z),

(so in particular, if ϕ(zk) = wk then M ∗
ϕk(z) = w∗k k(z)).
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Solution to the classical Nevanlinna-Pick
interpolation problem, cont.

So the N-P problem has a solution iff

I −MϕM ∗
ϕ ≥ 0 on M = span{k(z1), . . . , k(zn)},

in which case ϕ can be extended to all of H 2(D) without
increasing the norm.

Recall that if A, B are matrices, the Schur product of A and B
(write A ? B) is the entrywise product.

We can rewrite the condition for the existence of a solution of
the Pick problem as

([1]− ϕϕ ∗) ? k ≥ 0,

where [1] is the matrix which has all entries equal to 1.
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Solution to the classical Nevanlinna-Pick
interpolation problem, cont.

It is possible to give the solution explicitly using a “lurking
isometry” argument.

Let δ(z) = 1, Z(z) = z. Then the positivity condition can be
rewritten as

([1]− ϕϕ ∗) ? kk∗ = γγ ∗ ⇐⇒
δδ ∗ − ϕϕ ∗ = γγ ∗ ? ([1]− ZZ∗) ⇐⇒

Zγγ ∗Z ∗ + δδ ∗ = γγ ∗ + ϕϕ ∗

Then there is an isometry V such that

V

(
Z(z)γ(z)
δ(z)

)
=
(
γ(z)
ϕ(z)

)
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Solution to the classical Nevanlinna-Pick
interpolation problem, cont.

Let V =
(

A B
C D

)
. Then we have

Azγ(z) + B = γ(z)
Czγ(z) + D = ϕ(z)

Solve for γ in the first equation:

γ(z) = (1− Az)−1B.

Plug into the second equation:

ϕ(z) = D + zC(1− Az)−1B.

We refer to this as a transfer function representation for ϕ.
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Solution to the classical Nevanlinna-Pick
interpolation problem, cont.

The fact that M ∗
ϕ can be extended from M to the whole space

without increasing the norm is referred to as the Pick property
(for H 2(D)). Spaces with this property are rather special.

For example, there is no Hilbert space of functions with the Pick
property having H∞(D 2) as the space of multipliers. So how do
we solve interpolation problems in the function algebra
H∞(D 2)?
The approach we use, due to Jim Agler, is to look at all of the
spaces (and their kernels) having H∞(D 2) as the multiplier
algebra, and require that for all such kernels, ([1]−ϕϕ ∗)?k ≥ 0.
A similar approach applies to the Carath éodory-Fej ér
interpolation problem : Let a0, . . . ,an ∈ C. Is there a function
in the closed unit ball of H∞(D) having these values as the first
n + 1 coefficients of its series expansion about 0?
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Semigroupoids—Definition and basic properties

Let G be a set with a function from X → G, where X ⊂ G×G,
called a partial multiplication and written xy for (x, y) ∈ X.

We define idempotents as those elements e of G such that
ex= x whenever ex is defined and ye= y whenever ye is
defined.
The following laws are assumed to hold:

1. (associative law) If either (ab)c or a(bc) is defined, then so
is the other and they are equal. If ab, bc are defined, then
so is (ab)c.

2. (existence of idempotents) For all a ∈ G, there exist e, f ∈ G
with ea= a = af . Also, if e2 = e, then e is idempotent.

3. (nonexistence of inverses) If a,b ∈ G and ab = e where e is
idempotent, then a = b = e.

4. (strong artinian law) For all a ∈ G, the set {z,b,w : zbw= a}
is finite, + . . ..

We call such a G a semigroupoid.
No commutativity or cancellation required!
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Semigroupoids—Order

Define a partial order on G as follows:

b≤ a if there exist z,w ∈ G such that a = zbw

Check: a≤ a since a = eaf for some idempotents e, f , etc.

By definition G is artinian with respect to this order.

A set F ⊂ G is lower if a ∈ F and b≤ a then b ∈ F.
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Convolution products

The formal “power series” on a lower set F (ie, functions
f ,g : F → C) form a complex vector space P(F) indexed by F
with pointwise addition.

Since G is artinian there is a well-defined product given by

(f ? g)(a) =
∑
rs=a

f (r)g(s) ∈ P(F).

Multiplicative unit:

δ(x) =

{
1 x ∈ Fe,

0 otherwise.

A function f is invertible if and only if f (x) is invertible for all
x ∈ Fe.
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Convolution products, cont.

We also introduce the reverse product

(f ?̂g)(a) =
∑
rs=a

f (s)g(r).

The multiplicative unit remains δ and the invertibility condition is
the same.

It is unimportant that the functions map into C.



A bivariate ? product—definition

Michael Jury defines a generalization of the Schur product
which is a useful tool for interpolation problems. The equivalent
in our setting is the following, which can be viewed as a
bivariate version of the convolution product.

Definition
Let F be a lower set, A,B matrices over C indexed by F (we use
M(F) for the collection of such matrices). Define A ? B by

(A ? B)(a,b) =
∑
pq=a

∑
rs=b

A(p, r)B(q, s).

We can similarly define A ?̂B.

The assumption that the entries of A and B are in C is not
important, and we will at times use the ? and ?̂ product when
the entries are in other algebras.
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The bivariate ? product—properties

I Associative: C ? (A ? B) = (C ? A) ? B.

I Not necessarily commutative!

I A,B≥ 0 =⇒ A ? B≥ 0.

I [1] = δδ ∗ (that is, [1]a,b is 1 for a,b both elements of Fe and
zero otherwise) is the multiplicative unit.

I A invertible ⇐⇒ Aab is invertible for all a,b ∈ Fe. The
inverse is unique.

I The inverse of a positive matrix need not be positive!

I Inverses of selfadjoint elements are selfadjoint.

I (A ? B) ∗ = A∗ ? B∗.

I Equivalent statements apply to A ?̂B.



Toeplitz representations

Let ϕ be a function on a (finite) lower set F. Define the
associated Toeplitz representation T by

(T(ϕ))a,b =

{∑
cϕ(c), cb = a;

0 otherwise.

Note that T(ϕ)f = ϕ ? f .

In the case that G is the semigroupoid N, T(ϕ) is precisely the
Toeplitz matrix associated with the sequence {ϕ(j)}.

At the other extreme, when G = Ge, T(ϕ) is simply the diagonal
matrix with diagonal entries ϕ(a) for a ∈ G which, despite our
terminology, is very un-Toeplitz like!
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Generalized Szegő kernels

Theorem
Let A ∈ M(F) be positive, and suppose ‖A? 1‖ < 1. Then [1]−A
is invertible (with respect to the ? product) and ([1]− A)−1 ≥ 0.

Corollary
If ‖T(ϕ)‖ < 1, then ([1]− ϕϕ ∗)−1 is well defined and positive.

Set Aa,b = ϕ(a)ϕ(b) ∗. Then ‖A ? 1‖ < 1. The result then follows
from the last theorem.

Example
Take G = Ge = D, ϕ(z) = z, then ([1]− ϕϕ ∗)−1 is the Szegő
kernel.
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Interpolation problem

Let G be semigroupoid, A a normed algebra of functions on G.

Let F be a finite lower set, ξ : F → C given.

Does there exists a ϕ ∈ A with ‖ϕ‖A ≤ 1 and ϕ|F = ξ?

Ideally, we want to not only characterize when a solution exists,
but also explicitly give the solution.
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Examples

I If G = Ge = D, F a finite subset, A = H∞(D), this is the
classical Nevanlinna-Pick interpolation problem.

I More generally, we could take G = Ge = R⊂ Cn, again F a
finite subset, A = H∞(R). The case R a polydisk was done
by Agler. Other generalised Cartan domains by Ambrozie,
Ball, Timotin and others.

I We don’t need R simply connected. For example R⊂ C an
annulus was considered by Abrahamse.

I Let G = N, Ge = {0}, the ? product given by addition. Let
F = {0, . . . ,n}, a lower set. In this case we view ξ(k) as the
kth Taylor coefficient of a function expanded about 0. We
then have the Carathéodory-Fejér interpolation problem.

I G is a free semigroup on d letters, Ge contains only the
empty word, the ? product is concatenation. We can take G
to be commutative or noncommutative. The latter case is
the sort of generalization of Carathéodory-Fejér
interpolation considered by Popescu and others.



More Examples

I More generally, it is possible to consider mixtures of
problems from the last slide.

I There are also lots of exotic examples!

I In the above, the semigroupoids were rather tame. For
these, if a is not an idempotent and eaf = a, then f = e.
Also, there is cancellation, which is not necessary.



Reproducing kernel Hilbert spaces

We say that a function k : G×G→ C is a positive kernel on G if
for any finite subset A of G, the matrix (k(a,b))a,b∈A is positive
semidefinite.

Define k : G→ C as k(b) = k(·,b), b ∈ G.

In the usual way we form a sesquilinear form 〈·, ·〉 with
〈k(b), k(a)〉 = k(a,b), mod out by the kernel, complete to a
Hilbert space H(k).

On H(k) addition is defined termwise.



Reproducing kernels—the multiplier algebra for
a single kernel

Define the multiplier algebra H∞(k) as the collection of
operators T(ϕ) : f 7→ ϕ ? f for functions ϕ : G→ C satisfying
ϕ ? f ∈ H(k) for each f ∈ H(k).

H∞(k) is nonempty, since it contains T(δ).

The closed graph theorem implies that the elements of H∞(k)
are bounded.

For f ∈ H(k),

〈T(ϕ)f , k(a)〉 =

〈
f ,
∑
bc=a

ϕ(b) ∗k(c)

〉
.

So T(ϕ) ∗k(a) =
∑

bc=aϕ(b) ∗k(c);
ie, T(ϕ) ∗k(a) = (ϕ ∗ ? k)(a).
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The multiplier algebra, cont.

For a lower set F, if we set MF to the closed linear span of
kernel functions k(a), a ∈ F, then the usual sort of argument
gives MF invariant for adjoints of multipliers T(ϕ) ∗.

The ?-product is useful in characterising multipliers.

‖T(ϕ) ∗|MF‖ ≤ 1⇐⇒

(〈(1− T(ϕ)T(ϕ) ∗)k(a), k(b)〉)

=

(∑
pq=a

∑
sr=b

([1]pr − ϕ(p)ϕ(r) ∗)k(q, s)

)
= ([1]− ϕϕ ∗) ? k ≥ 0
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Test functions and families of reproducing
kernels

Following Agler, let Ψ denote a collection of functions {ψ} with
‖T(ψ)‖ ≤ 1, ψ n∗ → 0, (and . . .) called the test functions.

Note that ([1]− ψψ ∗)−1 ≥ 0 for all ψ ∈ Ψ.

The family of reproducing kernels associated to Ψ is KΨ = {k},
where

([1]− ψψ ∗) ? k ≥ 0

for all ψ ∈ Ψ and k ∈ KΨ. Our defintion of a semigroupoid

ensure that there exists a nontrivial family of test functions
(corresponding to the kernel k = 1).

Define the multiplier algebra H∞(K) as the intersection of all⋂
k∈K H∞(k), with norm of an element the infimum of its norm

over all H∞(k).

If G = Ge = D, Ψ = {z}, then the family of kernels consists of
kernels of the form γ ? k ?̂ γ ∗, where k(x, y) = (1− xy∗)−1 (the
Szegő kernel).
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Szegő kernel).



Test functions and families of reproducing
kernels

Following Agler, let Ψ denote a collection of functions {ψ} with
‖T(ψ)‖ ≤ 1, ψ n∗ → 0, (and . . .) called the test functions.

Note that ([1]− ψψ ∗)−1 ≥ 0 for all ψ ∈ Ψ.

The family of reproducing kernels associated to Ψ is KΨ = {k},
where

([1]− ψψ ∗) ? k ≥ 0

for all ψ ∈ Ψ and k ∈ KΨ. Our defintion of a semigroupoid

ensure that there exists a nontrivial family of test functions
(corresponding to the kernel k = 1).

Define the multiplier algebra H∞(K) as the intersection of all⋂
k∈K H∞(k), with norm of an element the infimum of its norm

over all H∞(k).

If G = Ge = D, Ψ = {z}, then the family of kernels consists of
kernels of the form γ ? k ?̂ γ ∗, where k(x, y) = (1− xy∗)−1 (the
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The evaluation map

Let C(Ψ) be the continuous functions on Ψ, the collection of
test functions.

Define E ∈ B(G,C(Ψ)) by

E(x)(ψ) = ψ(x), ψ ∈ Ψ,

and
‖E(x)‖ = sup

ψ∈Ψ
{|E(x)(ψ)|}.

I E(x) is the evaluation map on Ψ.

I ‖E(x)‖ < 1 for each x ∈ Ge and ‖E(x)‖ ≤ 1 otherwise.

I The collection {E(x) : x ∈ G} separates points, so the
smallest unital C∗-algebra containing all the E(x) is C(Ψ).
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Colligations and transfer functions

Let E be an evaluation map,

U =
(

A B
C D

)
unitary on E ⊕ C, E a Hilbert space

ρ : B → B(E) a unital ∗-representation.

Write Σ = (U, E , ρ) (called a colligation ).

Define the transfer function by

WΣ(x) =
(
Dδ + Cρ(E) ? (δ − Aρ(E))−1 ? (Bδ)

)
(x).
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The Main Result

Theorem (Realization )

Suppose Ψ is a collection of test functions over a semigroupoid
G, with associated family of kernels K. Further, assume
‖TE‖ < 1.
The following are equivalent,

(i) ϕ ∈ H∞(K) and ‖ϕ‖H∞(K) ≤ 1;

(iiF) for each finite lower set F ⊂ G there exists a positive kernel
Γ : F × F → (C(Ψ)) ∗ so that for all x, y ∈ F

([1]− ϕϕ ∗)(x, y) = (Γ ?̂([1]− EE∗))(x, y);

(iiG) there exists a positive kernel Γ : G×G→ (C(Ψ)) ∗ so that
for all x, y ∈ G

([1]− ϕϕ ∗)(x, y) = (Γ ?̂([1]− EE∗))(x, y); and

(iii) there is a colligation Σ so that ϕ = WΣ.



How the main result is proved

(iiF) =⇒ (iiG): Kurosh’s theorem.

(iiG) =⇒ (iii): Lurking isometry argument.

(iii) =⇒ (i): Tedious calculation.

(i) =⇒ (ii): Hahn-Banach separation argument.
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Agler-Ambrozie-Jury interpolation

Let F be a finite lower set, ξ : F → C given.

Then there exists a ϕ ∈ H∞(K) with ‖ϕ‖H∞(K) ≤ 1 and ϕ|F = ξ

⇐⇒ for each k ∈ KΨ, the kernel

F × F 3 (x, y) 7→ (([1]− φφ∗) ? k)(x, y)

is positive.

Moreover, in this case there is a transfer function representation
for the solution.

There is a similar result corresponding to left/right tangential
interpolation (eg, solving (ϕ ? z)(a) = w(a) for all a in a finite
lower set F).
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More on the proof of the realization theorem

(i) ϕ ∈ H∞(K) and ‖ϕ‖H∞(K) ≤ 1;

(iiF) for each finite lower set F ⊂ G there exists a positive kernel
Γ : F × F → (C(Ψ)) ∗ so that for all x, y ∈ F

([1]− ϕϕ ∗)(x, y) = (Γ ?̂([1]− EE∗))(x, y);

By contradiction:

Define the cone

CF = {
(
Γ ?̂([1]− EE∗)

)
x,y∈F

: Γ ∈ M(F,B∗)+},

and assume that

Mϕ =
(
([1]− ϕϕ∗)(x, y)

)
x,y∈F

/∈ CF.



More on the proof of the realization theorem

(i) ϕ ∈ H∞(K) and ‖ϕ‖H∞(K) ≤ 1;

(iiF) for each finite lower set F ⊂ G there exists a positive kernel
Γ : F × F → (C(Ψ)) ∗ so that for all x, y ∈ F

([1]− ϕϕ ∗)(x, y) = (Γ ?̂([1]− EE∗))(x, y);

By contradiction:

Define the cone

CF = {
(
Γ ?̂([1]− EE∗)

)
x,y∈F

: Γ ∈ M(F,B∗)+},

and assume that

Mϕ =
(
([1]− ϕϕ∗)(x, y)

)
x,y∈F

/∈ CF.



More on the proof of the realization theorem,
cont.

Use a Hahn-Banach separation argument.

I CF has nonempty interior (in fact it contains all nonnegative
matrices in M(F));

I CF is closed

(Requires a surprisingly involved argument.)

This gives a linear functional λ which is nonnegative on CF and
such that λ(Mφ) < 0.

Define an inner product on P(F) by 〈f ,g〉 = λ(fg∗), and let µ be
the left regular representation on the resulting Hilbert space.
This is a cyclic representation with cyclic vector δ.

‖µ(ψ)‖ ≤ 1 for test functions. A cyclic representation with this
property comes from a reproducing kernel on F which extends
to a reproducing kernel in k ∈ KΨ.

Since ‖µ(ϕ)‖ > 1, ([1]− ϕϕ∗) ?̂ k 6≥ 0.



More on the proof of the realization theorem,
cont.

Use a Hahn-Banach separation argument.

I CF has nonempty interior (in fact it contains all nonnegative
matrices in M(F));

I CF is closed

(Requires a surprisingly involved argument.)

This gives a linear functional λ which is nonnegative on CF and
such that λ(Mφ) < 0.

Define an inner product on P(F) by 〈f ,g〉 = λ(fg∗), and let µ be
the left regular representation on the resulting Hilbert space.
This is a cyclic representation with cyclic vector δ.

‖µ(ψ)‖ ≤ 1 for test functions. A cyclic representation with this
property comes from a reproducing kernel on F which extends
to a reproducing kernel in k ∈ KΨ.

Since ‖µ(ϕ)‖ > 1, ([1]− ϕϕ∗) ?̂ k 6≥ 0.



More on the proof of the realization theorem,
cont.

Use a Hahn-Banach separation argument.

I CF has nonempty interior (in fact it contains all nonnegative
matrices in M(F));

I CF is closed (Requires a surprisingly involved argument.)

This gives a linear functional λ which is nonnegative on CF and
such that λ(Mφ) < 0.

Define an inner product on P(F) by 〈f ,g〉 = λ(fg∗), and let µ be
the left regular representation on the resulting Hilbert space.
This is a cyclic representation with cyclic vector δ.

‖µ(ψ)‖ ≤ 1 for test functions. A cyclic representation with this
property comes from a reproducing kernel on F which extends
to a reproducing kernel in k ∈ KΨ.

Since ‖µ(ϕ)‖ > 1, ([1]− ϕϕ∗) ?̂ k 6≥ 0.



More on the proof of the realization theorem,
cont.

Use a Hahn-Banach separation argument.

I CF has nonempty interior (in fact it contains all nonnegative
matrices in M(F));

I CF is closed (Requires a surprisingly involved argument.)

This gives a linear functional λ which is nonnegative on CF and
such that λ(Mφ) < 0.

Define an inner product on P(F) by 〈f ,g〉 = λ(fg∗), and let µ be
the left regular representation on the resulting Hilbert space.
This is a cyclic representation with cyclic vector δ.

‖µ(ψ)‖ ≤ 1 for test functions. A cyclic representation with this
property comes from a reproducing kernel on F which extends
to a reproducing kernel in k ∈ KΨ.

Since ‖µ(ϕ)‖ > 1, ([1]− ϕϕ∗) ?̂ k 6≥ 0.



More on the proof of the realization theorem,
cont.

Use a Hahn-Banach separation argument.

I CF has nonempty interior (in fact it contains all nonnegative
matrices in M(F));

I CF is closed (Requires a surprisingly involved argument.)

This gives a linear functional λ which is nonnegative on CF and
such that λ(Mφ) < 0.

Define an inner product on P(F) by 〈f ,g〉 = λ(fg∗), and let µ be
the left regular representation on the resulting Hilbert space.
This is a cyclic representation with cyclic vector δ.

‖µ(ψ)‖ ≤ 1 for test functions. A cyclic representation with this
property comes from a reproducing kernel on F which extends
to a reproducing kernel in k ∈ KΨ.

Since ‖µ(ϕ)‖ > 1, ([1]− ϕϕ∗) ?̂ k 6≥ 0.



More on the proof of the realization theorem,
cont.

Use a Hahn-Banach separation argument.

I CF has nonempty interior (in fact it contains all nonnegative
matrices in M(F));

I CF is closed (Requires a surprisingly involved argument.)

This gives a linear functional λ which is nonnegative on CF and
such that λ(Mφ) < 0.

Define an inner product on P(F) by 〈f ,g〉 = λ(fg∗), and let µ be
the left regular representation on the resulting Hilbert space.
This is a cyclic representation with cyclic vector δ.

‖µ(ψ)‖ ≤ 1 for test functions. A cyclic representation with this
property comes from a reproducing kernel on F which extends
to a reproducing kernel in k ∈ KΨ.

Since ‖µ(ϕ)‖ > 1, ([1]− ϕϕ∗) ?̂ k 6≥ 0.



More on the proof of the realization theorem,
cont.

Use a Hahn-Banach separation argument.

I CF has nonempty interior (in fact it contains all nonnegative
matrices in M(F));

I CF is closed (Requires a surprisingly involved argument.)

This gives a linear functional λ which is nonnegative on CF and
such that λ(Mφ) < 0.

Define an inner product on P(F) by 〈f ,g〉 = λ(fg∗), and let µ be
the left regular representation on the resulting Hilbert space.
This is a cyclic representation with cyclic vector δ.

‖µ(ψ)‖ ≤ 1 for test functions. A cyclic representation with this
property comes from a reproducing kernel on F which extends
to a reproducing kernel in k ∈ KΨ.

Since ‖µ(ϕ)‖ > 1, ([1]− ϕϕ∗) ?̂ k 6≥ 0.



Applications

This leads to interpolation theorems on all of the algebras
mentioned earlier, plus many more!
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