
Geometry and Analysis

of the Faddeev model

Lev Kapitanski

University of Miami

Coral Gables, Forida

Durham, August 6, 2005

1



L. Kapitanski. On Skyrme’s model, in: Nonlinear

Problems in Mathematical Physics and Related

Topics II: In Honor of Professor O. A. La-

dyzhenskaya, Birman et al., eds. Kluwer, 2002,

pp.229-242

D. Auckly, L. Kapitanski. Holonomy and Skyrme’s

model, Comm. Math. Phys., 240, 97-122

(2003)

D. Auckly, L. Kapitanski. S2 - valued maps

and Faddeev’s model, to appear in: Comm.

Math. Phys.

2



L. D. Faddeev: 1975

particles – spatially localized solutions of PDEs

with enough bells and whistles

(charge, etc.)

+ have internal knotted structure

motivation: Skyrme’s model (1961):

particles – spatially localized solutions of PDEs

with enough bells and whistles

( Lord Kelvin’s “vortex atoms”, 1867 )

In the original Skyrme model:

fields are maps R3 → S3 with {|x| = ∞} 7→ 1

homotopy classes of such maps are classi-

fied by degree (called “topological charge”,

“baryon number”, etc. - “bells and whistles”)
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S3 ≃ SU(2) ≃ unit quaternions

u =

(

z1 z2
−z2 z1

)

|z1|
2 + |z2|

2 = 1

z1 = u0 + u1 i, z2 = u2 + u3 i

u = u0 + u1 i + u2 j + u3 k

u−1 = u∗ = u0 − u1 i − u2 j − u3 k

R3 ≃ su(2) ≃ purely imaginary quaternions

a =

(

a1i a2 + a3i
−a2 + a3i −a1i

)

a = a1 i + a2 j + a3 k

〈a, b〉 = ~a ·~b = −1
2 Trace(ab) = Re(a b∗)

4



Skyrme: u : R
3 → S3 ⊂ R

4

Skyrme energy (static Hamiltonian):

E(u) =
∫

R3

1

2
|du|2 +

1

4
|du ∧ du|2 dx

Topological charge:

Q(u) = c
∫

R3

∑

ǫαβγδ uα
∂
(

uβ, uγ, uδ
)

∂
(

x1, x2, x3
) d3x
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Skyrme: u : R
3 → SU(2) a = u−1du

– su(2)-valued 1-form – flat connection – pull-

back of the Maurer-Cartan form g−1dg

Skyrme energy (static Hamiltonian):

E(u) =

∫

R3

1

2
|u−1 du|2 +

1

4
|u−1 du ∧ u−1 du|2

E[a] =

∫

R3

1

2
|a|2 +

1

16
|[a, a]|2

Topological charge:

Q(u) =
1

24π2

∫

R3

Tr
(

u−1 du ∧ u−1 du ∧ u−1 du
)

Q[a] = c
∫

R3

〈a, [a, a]〉

E[a] ≥ const |Q[a]|
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In the original Faddeev model:

fields are maps n : R3 → S2 ⊂ R3

with {|x| = ∞} 7→ pole

homotopy classes of such maps are classi-

fied by the Hopf invariant (called “topological

charge”, “linking number”, etc. )
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Hopf invariant

S3 → S2
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Faddeev fields: n : R
3 → S2 ⊂ R

3

n(x) = (n1(x), n2(x), n3(x)) |n(x)| = 1

Faddeev energy: E(n) =

∫

R3

|dn|2 + |dn ∧ dn|2

|dn|2 =
∂na

∂xk
∂na

∂xk

|dn ∧ dn|2 =
∑

i,j

∣

∣

∣

∣

∣

∂~n

∂xi
×
∂~n

∂xj

∣

∣

∣

∣

∣

2

=
∑

i,j

(

~n,
∂~n

∂xi
,
∂~n

∂xj

)2

Hopf number: Q(n) =

∫

R3

α ∧ dα ∈ Z

dα = n∗ωS2 δα = 0

ωS2 =
1

4π

(

n1dn2 ∧ dn3 + n2dn3 ∧ dn1 + n3dn1 ∧ dn2
)

9



Estimate: E(n) ≥ c |Q(n)|3/4

A. F. Vakulenko & L. V. Kapitanski “Stabil-

ity of Solitons in S2-Nonlinear σ-Model”, Sov.

Phys. Doklady, 24 (6) (June 1979), 443-444

Existence of minimizers:

For Q(n) = 1 and an infinite number of other

possible values:

Lin, Fanghua; Yang, Yisong “Existence of en-

ergy minimizers as stable knotted solitons in

the Faddeev model.” Comm. Math. Phys.

249 (2004), no. 2, 273–303
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When R
3 or S3 is replaced by a general Rie-

mannian three-manifold, M3, the homotopy

classification of maps to S2 is more compli-

cated.

Theorem [Pontrjagin, 1941] Let M be a

closed, connected, oriented three-manifold. To

any continuous map ϕ from M to S2 one as-

sociates a cohomology class ϕ∗µS2 ∈ H2(M ;Z),

where µS2 is a generator of H2(S2;Z). Every

class may be obtained from some map, and

two maps with different classes lie in different

homotopy classes. The homotopy classes of

maps with a fixed class α ∈ H2(M ;Z) are in

bijective correspondence with

H3(M ;Z)/(2 α ∪H1(M ;Z)).
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New features:

1) There is a new invariant given by the in-

duced map on second cohomology.

2) The Hopf invariant generalizes into a sec-

ondary invariant that sometimes takes values

in a finite cyclic group.

Example. smooth ϕ : T3 → S2

Let γ1, γ2, γ3 be a basis in H1(T
3,Z).

The inverse image of a regular value p ∈ S2 is

a curve, γ = ϕ−1(p), and

γ ∼ m1γ1 +m2γ2 +m3γ3 in H1(T
3,Z).

These m1, m2, m3 are homotopy invariants.

Find m = g.c.d.(m1, m2, m3).

Case m = 0: There are Z different homotopy

classes, distinguished by Hopf number.

Case m 6= 0: There are 2m different homo-

topy classes corresponding to the samem1, m2, m3.
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A simpler example: ϕ : S2 × S1 → S2

(z, θ) 7→ ϕ(z, θ); ϕ(·, θ) : S2 → S2

The primary invariant: m = degree (ϕ(·, θ))

If m 6= 0, there are 2m different homotopy

classes corresponding to the same degree.

To visualize m = 1 case: 2 homotopy classes:

1) (z, θ) 7→ z

2) (z, θ) 7→ z eiθ
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The pictures that follow illustrate the first half

of the map, i.e., S2× [0, π] → S2, i.e., between

the innermost and the middle spheres.
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≈

Dirac’s strings problem

[one half of the full picture, see later]
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Putting two halves together:

Start with
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After “one half” has been changed:
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i.e.,
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Now repeat the maneuver:
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and
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finally,
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S3 – unit quaternions: q = q0+q1 i+q2 j+q3 k

S2 – unit sphere in the purely imaginary

quaternions

S1 – unit complex numbers ⊂ S3

Hopf map: h : S3 → S2 q 7→ q i q−1

Dirac’s strings: q : S2 × S1 → S3

q(z, λ) = qλq−1, where z = q i q−1

deg q = 2.

Lemma. Given ϕ, ψ : M → S2, there exists

a map u : M → S3 such that ψ = uϕu−1 iff

ψ∗µS2 = ϕ∗µS2.

If ψ = uϕu−1, then ψ = ũ ϕ ũ−1,

where ũ = u q(ϕ, λ), and λ is any map M → S1.

q(ϕ, λ)∗µS3 = (ϕ, λ)∗q∗µS3 = (ϕ, λ)∗(2µS2 ∪ µS1)

= 2 ϕ∗µS2 ∪ λ∗µS1
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Fix ϕ : M → S2. The map η 7→ (ϕ∗µS2 ∪ η)[M ]

from H1(M ;Z) to Z is a group homomor-

phism, hence has image mZ for some m de-

pending on the class ϕ∗µS2.

Theorem (Auckly & K). All homotopy classes

of maps ψ : M → S2 with the same second co-

homology class ψ∗µS2 = ϕ∗µS2 are obtained in

the form ψ = uϕu−1.

The maps u1ϕu
−1
1 and u2ϕu

−1
2 are homo-

topic if and only if

deg u1 ≡ deg u2 (mod 2m)

Sketch of a piece of the proof

Čech picture: do locally, then patch together

1) What does ϕ∗µS2 mean?

2) How can one find u : M3 → S3 such that

ψ = uϕu−1?
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Local Representation. If ϕ : I3 → S2, then

there exists u : I3 → S3 such that ϕ = u−1 iu.

For any two such maps, u and v, there is a

map λ : I3 → S1 so that v = λu.

Assume for a moment that we knew that such

a map existed. Then

ϕ−1dϕ = a+ ϕaϕ, where a = u−1du

Hence,

a =
1

2
ϕ−1dϕ+ ϕξ

for some real valued 1-form ξ. Since a is flat,

0 = da+ a ∧ a = ϕdξ −
1

4
dϕ ∧ dϕ

or, equivalently,

dξ = −
1

4
ϕdϕ ∧ dϕ

We will turn this around by solving for ξ, then

a, and, finally, u.
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One can directly check that ϕdϕ∧dϕ is real and

closed. By the Poincaré lemma, there exists a

1-form ξ such that dξ = −1
4ϕdϕ ∧ dϕ.

Set a = 1
2ϕ

∗dϕ + ϕξ. This is an su(2)-valued

1-form, and it is flat: da + a ∧ a = 0. By

the nonlinear Poincaré lemma, there exists a

w : I3 → S3 with a = w−1dw.

Consider ψ = wϕw−1.

Since ϕ(x) ∈ S2, ψ(x) ∈ S2 as well. Moreover,

ψ(x) ≡ z = const ∈ S2. Indeed,

ψ−1dψ = w(ϕ−1dϕ− a− ϕaϕ)w−1 = 0

The Hopf map, h : S3 → S2, is onto, hence

there is a p ∈ S3 so that wϕw−1 = p−1ip. Take

u = pw to get ϕ = u−1iu.
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Nonlinear Poincaré Lemma (Auckly & K.)

Given any L2 g-valued 1-form A on Im such

that

dA +
1

2
[A, A] = 0 (1)

in the sense of distributions, there exists u ∈

W1,2(Im, G) such that u−1 ∈W1,2(Im, G) and

A = u−1 du. Furthermore, for any two such

maps, u and v, there exists g ∈ G so that

u(x) = g · v(x), for almost every x ∈ Im.
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maps ↔ connections

u : M → S3
 a = u−1 du

degu = −
1

12π2

∫

M

Re(a ∧ a ∧ a)

=
1

4π2

∫

M

Re(a ∧ da+
2

3
a ∧ a ∧ a) = cs(a)

ũ = u q(ϕ, λ)  ã = ũ−1 dũ

Varying λ : M → S1, . . .
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Theorem. Any orientation preserving S2-isometry

class of a smooth map from M to S2 homo-

topic to ϕ is uniquely represented by a smooth

flat connection a, which has trivial holonomy

and satisfies the conditions

1. cs(a) = − 1
12π2

∫

M Re(a ∧ a ∧ a) ∈ 2mZ

2. H〈a, ϕ〉 = h1 η1 + · · · + hb ηb
with h1, . . . , hb ∈ [0,1) and

η1, . . . , ηb – an integral basis for H1(M ;R)

3. δ 〈a, ϕ〉 = 0 (δ is the adjoint of d)
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Faddeev energy of ψ : M → S2 is

E(ψ) =
∫

M

|dψ|2 + |dψ ∧ dψ|2

If ψ is smooth and homotopic to ϕ,

then ψ = uϕu−1. Re-write E(ψ) in terms of ϕ

and a = u−1du

E(ψ) = Eϕ[a] =

∫

M

|Daϕ|
2 + |Daϕ ∧Daϕ|

2

where Daϕ = dϕ + [a, ϕ]

Class Aϕ: a ∈ L2(M ;R3), da+ a ∧ a = 0,

ρa = 0, Eϕ[a] < ∞, cs(a) ∈ 2mZ,

H〈a, ϕ〉 = h1 η1+ · · ·+hb ηb , h1, . . . , hb ∈ [0,1],

δ 〈a, ϕ〉 = 0

Theorem. Eϕ[a] has a minimum in Aϕ.
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