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L. D. Faddeev: 1975

particles — spatially localized solutions of PDEs
with enough bells and whistles
(charge, etc.)
+ have internal knotted structure

motivation: Skyrme’s model (1961):

particles — spatially localized solutions of PDEs
with enough bells and whistles

( Lord Kelvin's “vortex atoms”, 1867 )

In the original Skyrme model:
fields are maps R3 — S3 with {|z|] = 0} — 1

homotopy classes of such maps are classi-
fied by degree (called “topological charge”,
“baryon number”, etc. - “bells and whistles")



S3 ~ SU(2) ~ unit quaternions
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sSkyrme: u :R3 = S3 cR?

Skyrme energy (static Hamiltonian):

1 1
E(u) = /§|du|2 + Z|du A dul?®  dzx
R3

Topological charge:




Skyrme: u : R3 — SU(2) a = u tdu

— su(2)-valued 1-form — flat connection — pull-
back of the Maurer-Cartan form ¢~ 1dg

Skyrme energy (static Hamiltonian):

1 1
E(u) = /§|u_1du|2 + Z|u_1du A utdul?
R3

Bla) = /?HQ-—maW

Topological charge.

1
QW) = 5,

(u_ldu A utdu A u_ldu)

Qlal = ¢ [ (a, [a, al)

R3

Ela] > const |Q[a]|



In the original Faddeev model:

fields are maps n: R3 — 52 Cc R3
with {|z| = oo} — pole

homotopy classes of such maps are classi-
fied by the Hopf invariant (called “topological
charge”, “linking number”, etc. )



Hopf invariant

S3 . 52




Faddeev fields: n:R3 — S22 c R3
n(z) = (nl(z), n?(x), n3(z)) n(z)] =1

Faddeev energy: E(n) = /|dn|2 4+ |dn A dnl|?

R3
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Hopf number: Q(n) = /a/\da e 7
R3

do = n*wsz daa =20

1
wg2 = . (nldn2 A dn3 -+ n?dn3 A dnt -+ n3dnl A an)
T



Estimate: FE(n) > ¢|Qn)|3/4

A. F. Vakulenko & L. V. Kapitanski “Stabil-
ity of Solitons in S2-Nonlinear o-Model”, Sov.
Phys. Doklady, 24 (6) (June 1979), 443-444

EXxistence of minimizers:
For Q(n) = 1 and an infinite number of other
possible values:

Lin, Fanghua; Yang, Yisong “EXxistence of en-
ergy minimizers as stable knotted solitons in
the Faddeev model.” Comm. Math. Phys.
249 (2004), no. 2, 273—303
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When R3 or S3 is replaced by a general Rie-
mannian three-manifold, M3, the homotopy
classification of maps to S?2 is more compli-
cated.

Theorem [Pontrjagin, 1941] Let M be a
closed, connected, oriented three-manifold. To
any continuous map ¢ from M to S?2 one as-
sociates a cohomology class p*ug2 € H?2(M:7Z),
where pgo is a generator of H2(S?;Z). Every
class may be obtained from some map, and
two maps with different classes lie in different
homotopy classes. The homotopy classes of
maps with a fixed class « € H2(M;Z) are in
bijective correspondence with

H3(M;Z)/(2 U HY(M;7)).
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New features:

1) There is a new invariant given by the in-
duced map on second cohomology.

2) The Hopf invariant generalizes into a sec-
ondary invariant that sometimes takes values
in a finite cyclic group.

Example. smooth ¢ : T3 — §?

Let ~v1, 2, v3 be a basis in H{(T3,7).

The inverse image of a regular value p € S2 is
a curve, v = o~ 1(p), and

v ~ my1y1 + may2 + mays in Hi(T3,Z).

These mq, mo, m3 are homotopy invariants.

Find m g.c.d.(mq, mo, m3).

Case m = 0: There are Z different homotopy
classes, distinguished by Hopf number.

Case m #* 0: There are 2m different homo-
topy classes corresponding to the same my, mo, ms.

12



A simpler example: ¢ : S° x St — 82
(279) I—>QO(Z,9), 90(79) : 52%52
The primary invariant: m = degree (¢o(-,0))

If m # 0, there are 2m different homotopy
classes corresponding to the same degree.

To visualize m = 1 case: 2 homotopy classes:
1) (2,0) — z

2) (2,0) — zel?
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The pictures that follow illustrate the first half
of the map, i.e., S?x [0, 7] — S2, i.e., between
the innermost and the middle spheres.
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Dirac’s strings problem

[one half of the full picture, see later]
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Putting two halves together:

Start with
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After “one half’ has been changed:
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Now repeat the maneuver:

»
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finally,

C
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S3 — unit quaternions: ¢ = ¢qog+q1i+gj+ g3k

S2 — unit sphere in the purely imaginary
quaternions

S1 — unit complex numbers C S3

Hopf map: h: S3 — §S2 g+— qig !

Dirac’s strings: gq: S2x S — §3

q(z, A) = ghg—1, where z = qiqg!
degq = 2.

Lemma. Given o, ¢ : M — S2, there exists
amap u: M — S3 such that ¥ = uweu1 iff

Vg = $ uge.
If y = upu=l, then v = Gpa 1
where @ = uq(p, \), and X is any map M — S1.

q(o, N gz = (o, )"0 gy = (0, \)* (2uga U pgr)
= 29" g2 U g1
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Fix ¢ : M — S2. The map n — (¢*ug2 Un)[M]
from HY(M:;Z) to Z is a group homomor-
phism, hence has image mZ for some m de-
pending on the class ¢*ugo2.

Theorem (Auckly & K). All homotopy classes
of maps v : M — S2 with the same second co-
homology class ¥*ug> = p*uge are obtained in

the form ¢ = ugpu_l.

1

The maps wuq goufl and us@u,~ are homo-

topic if and only if
deg u1 = deg us> (Mmod 2m)
Sketch of a piece of the proof
Cech picture: do locally, then patch together
1) What does ¢p*ug> mean?

2) How can one find v : M3 — S3 such that
Y = ugou_l?
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Local Representation. If ¢ : I3 — 52, then
there exists u : I3 — S3 such that ¢ =« 1
For any two such maps, v and v, there is a
map )\ : I3 — S so that v = \u.

1u.

Assume for a moment that we knew that such
a map existed. Then

go_ldgo = a + pay, where a = tdu

Hence,

1 _
a = Lo + ¢

for some real valued 1-form &. Since a is flat,
O=da—|—a/\a=g0d£—%dgo/\dgo
or, equivalently,
d§ = —%sodso N dep

We will turn this around by solving for &, then
a, and, finally, w.
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One can directly check that pdpAdy is real and
closed. By the Poincaré lemma, there exists a
1-form ¢ such that dé = —Zpdp A de.

Set a = %go*dgo + ©&. This is an su(2)-valued
1-form, and it is flat: da +a ANa = 0. By
the nonlinear Poincaré lemma, there exists a
w: I3 — 83 with a = wldw.

Consider ¢ = wpw 1.

Since ¢(z) € S2, ¥(z) € S2 as well. Moreover,
Y(z) = z = const € S2. Indeed,

by = w(p e — a — pap)w T =0

The Hopf map, h : S3 — S2, is onto, hence

there is a p € S3 so that wow™1 = p~lip. Take

1.

u = pw to get o = u™ “1u.
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Nonlinear Poincaré Lemma (Auckly & K.)
Given any L? g-valued 1-form A on I™ such
that

dA—l—%[A, Al =0 (1)

in the sense of distributions, there exists u &
wl2(rm @) such that w1 e wh2(/™ @) and
A = v ldu. Furthermore, for any two such
maps, v and v, there exists g € G so that
u(x) = g-v(x), for almost every x= € I™.
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maps > connections

w: M — S3 ~ a = u Ldu
d — 1 R
egu——12W2M e(aNaANa)

1 2
= 4—7T2]\£Re(a/\da—|—§a/\a/\a) = cs(a)

i =uq(p,\) ~ a=a1ldu

Varying A\: M — S, ...
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Theorem. Any orientation preserving SQ-isometry
class of a smooth map from M to S2 homo-
topic to ¢ is uniquely represented by a smooth
flat connection a, which has trivial holonomy
and satisfies the conditions

1. cs(a) = —ﬁ fyy Re(anana) € 2mZ

2. H{a, ) = himi+ -+ hymyp
with hy,..., ks € [0,1) and
n,...,m, — an integral basis for H1(M;R)

3. §{a, p) = 0 (4 is the adjoint of d)
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Faddeev energy of v : M — S2 is

B) = [la + |y A dy?

M

If ¢ is smooth and homotopic to o,
then v = upu—1. Re-write E(¢) in terms of ¢
and a = v ldu

E() = Eglal = [ |Dagl? + |Da A Dagl?
M

where Dgp = dp + [a, ¢]

Class 2, a € L?(M;R3), da+ana=0,

pa =0, Eypla] <oco, cs(a) € 2mZ,

H<CL, 90> — h1771+"'+hb7767 hla"'7hb S [07 1]1
d{a, p) = 0O

Theorem. Ey [a] has a minimum in 2.
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