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Exampins: We consider multi-component body, each
component consists of different material with differ-
ent characteristics (geometric properties), say, in geo-
physics, clay, rock, cil, in medicine, human body con-
sists of fat, skin, muscles, bones.




Admissible Polvhedron X

dimensionally homogeneous dirn — n, i.e. each (n—
k)-simplex is contained in at least one (n)-simplex,
Re==ok B

(r)-simplices are called CHAMBERS, (n — 1)-
simplices are called FACES
closed, connected, finite

{(n — 1)-chainable i.e. any two chambers can be joined
by a chain of faces and chambers

FACES M
interface boundary ~ adjacent to two chambers @

part of the polyhedron boundary ' adjacent to one

chamber
CHAMBERS @
(o)

CONICAL POINTS




Admissible Riemanntan Polyhedron M

We endow AP X with a family of smooth up to the
boundary {non-degenerate, Riemannian) metrics, not
necessary glued by isometry:

A — {E-’m}ff — M

Girn T 4~
for any $2,, 2; having common interface .

INTERFACES: artificial, with Jumps

gi = (&%) g+ = g{52=)
From now on chambers are the union of (re)-simplices
without metri¢c jumps inside. For technical simpiicity

we do not consider partly artificial partly real jumps
interfaces,.



Coordinates

general intrinsic {x} = {x!, ...,z"), i.e. any smooth
Inside %2,

scrmi-geodesic Q.o = (¢ .." Na), ¢* € v =
1,..,n -1, o- unit outward (inwardInormal
Sobolev Space
Hy = {& CHI(Q): o, = &, |- =0}
Laplace-Beltrami operator

The Dirichlet form [{V&, Vo) determines L-B oper-
ator by standard procedure of speciral theory
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Boundary Spectral Data {(85S12)

{' Dgiop(X) = Mor (0%, X £ .M,
(Mg =0, g C .M,
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Uniquchess Theorem

Consider M, M - two Admissible Riemannian Polyhe-
dra, such that dim A1 = dim .M = n, then

Th.: Assume BSD (AMM=BSD (M),

Fo="Cn, Mo CdM, FaC as,
:-4. =Y
2ok = =Fxlr,

Then polvhedron M is isometric to polyhedron A,




Published Results

Katchalov A., Kurylev ¥Ya_, Lassas M., " Inverse Bound-
ary Spectral Problems” , 2001

e Unigueness results for smooth Riemannian mani-
folds

¢ Rleconstruction procedure frcm BS5D given on a
part of the manifcld boundary

e Equivalence of spectral and dynami¢ data

¢ BC-method (Belishev M.}




Difficulties

Trylng to apply methods from the KKL book we have
encounted the following difficulties (presence of inter-
faces and conical points gave rise to them):

¢ boundary distance functions are not one-to one
s |length space to be defined

e Gaussian beams on interfaces for multi-0 anisotropic
case

« Tataru's type unigueness thearems

s Kervaire, 1960 constructed 10D polvhedron which
does not admit any differentiable structure

e Separating properties of eigenfunctions are not
known at conical points



Eells., Fuglede B., "Harmonic maps between Rie-
mannian Polyhecdra”, 2001

Kirpichnikova A., " The behaviour of the Gaussian
beam in the anisotropic medium with an inter-
face", 2005




Gaussian Beams

are special solutions to the WE

DH{.-'T — D, .
Ul o =&, =0,
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¢ propagate along the geodesic p{f) with unit ve-
loCity,

* are concentrated near the point on uft} at time
t.




Mathematically Gaussian beams can be found in the
form of formal series w.r.t. small parameter 0 < c < 1 :

L"r = ﬂ-".'ir._: b E}:IJ{ T-E' -le}zlu'-ﬁ(iﬁj;! ME = {':ITE) E
=0

The physical properties require phase function © to
be real at one point on uft) which propagates atong
the geodesic at time ¢ and positive definite everywhere
else:

3O(u(t)) =0,

I () =0, z # puflt).
At any time ¢ the concentration of energy of a Gaus-
sian beam coincides with Gaussian distribution (error

function) hence the name of the WE solution. They
are aisc called "quasl-photons” |




Phase Function

& = pO)’ — fE) + SH NG — ) +

Conditions on © to be a phase function of a Gaussian
beam require

Sp(t) =0, SH{)>=0.
The corresponding hamiltonian

W = g pa(ps(t) + (a(2))?

Each term of the phase function decomposition (as
well as the amplitude functions) can be found as a
sclution of sopme first order differential equations, sup-
plied with appropriate inltial data. The basic geodeasic
and impulses are solutions of HamHton (cananlcal)
equations, the second term - guadratic form H(L) Is
a solution of 2 Riceati equation and so on,




Gaussian Beams on interface

Using the resuits of Eells and Fuglede we can concen-
trate on Gaussian beams not going through conical
points and consider their behaviour on interfaces,

Thetotal field consists of three components: ¢/, e/ g,
Continuity conditions 4+ the fact that each 7 is a so-
lution of WE — give conditions on each term of ©

(and amplitude function ).
en ., = ™|, = &',

Careful calculations allow us *o find the coefficients

for all terms of © and = hence we find a Gaussian
beam.



Transmission and Reflection Laws

This means that V& and p ligin the same 21 coplane,
there are standard reflection and transmission angles

in this coplang,
p=(D.p.), b = dO"|, = dO™/|.. = d&*I,
The linear part leads us to Anisotropic gcneraliza-

tion of Snell's Law:

1 s
. . : T e
SN -'1;!'*'?' = 5IN 'jﬂ'm»tv.'ll':—tm,

cos i’ = 1,‘;’;1 — Sin c,a**’z
Anisotropic generalization of Frenel's Law;

gin ™l = sine™ < 1,
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For 20 coplane there exists a critical angle ™ where

o = z. For our inverse problem we consider only

Pt e O and 0 < _t;rf-:aﬁ‘ﬂf? < 1.

The main result we need is that once we have a metric
Jump the energy will reflect in at least some plane.




Sketch of the Uniqueness Th. Proof

e Consider two ARP M and M with equal(diffec) BSD.
We start reconstruction from the parts Mg, Ty of ARP
poundaries by BC-methcd. On each stage we extend
the known data region and show that the obtained
regions are isometric on both ARP.

Start We assume that we know the data on same
part of the boundary 'p C dM, g © M. Using
procedure from KKL book, we reconstruct the
first regions D, D, Isometric to each other.

(DD @)

Data recalculation We can recait:ulate BSD on 8D, 8D o
and show that they are equal (sce KKL)

(@D () ~ I

Extending to whole chamber €2; We continue pre-
vious procedure,

Going through the mterface What if we sent GB
and it did return in fmrte time?

("
EN S

Whole Polyhedron




