Commutative algebras of Toeplitz operators and Berezin quantization

N. Vasilevski

Departamento de Matemáticas
CINVESTAV del I.P.N., Mexico City, México
e-mail: nvasilev@math.cinvestav.mx
http://www.math.cinvestav.mx/~nvasilev
\mathbb{D} is the unit disk in \mathbb{C},
$L_{2}(\mathbb{D})$ with the Lebesgue plane measure $d \mu(z)=d x d y$, Bergman space $\mathcal{A}^{2}(\mathbb{D})$ consists of analytic functions in \mathbb{D}, Bergman orthogonal projection $B_{\mathbb{D}}$ of $L_{2}(\mathbb{D})$ onto $\mathcal{A}^{2}(\mathbb{D})$:

$$
\left(B_{\mathbb{D}} \varphi\right)(z)=\frac{1}{\pi} \int_{\mathbb{D}} \frac{\varphi(\zeta) d \mu(\zeta)}{(1-z \bar{\zeta})^{2}}
$$

Toeplitz operator T_{a} with symbol $a=a(z)$:

$$
T_{a}: \varphi \in \mathcal{A}^{2}(\mathbb{D}) \longmapsto B_{\mathbb{D}} a \varphi \in \mathcal{A}^{2}(\mathbb{D})
$$

Unit Disk as a Hyperbolic Plane

Consider the unit disk \mathbb{D} endowed with the hyperbolic metric

$$
g=d s^{2}=\frac{1}{\pi} \frac{d x^{2}+d y^{2}}{\left(1-\left(x^{2}+y^{2}\right)\right)^{2}}
$$

A geodesic, or a hyperbolic straight line, in \mathbb{D} is (a part of) an Euclidian circle or a straight line orthogonal to the boundary $S^{1}=\partial \mathbb{D}$.

Each pair of geodesics, say L_{1} and L_{2}, lie in a geometrically defined object, one-parameter family \mathcal{P} of geodesics, which is called the pencil determined by L_{1} and L_{2}. Each pencil has an associated family \mathcal{C} of lines, called cycles, the orthogonal trajectories to geodesics forming the pencil.

The pencil \mathcal{P} determined by L_{1} and L_{2} is called
parabolic if L_{1} and L_{2} are parallel, in this case \mathcal{P} is a set of all geodesics parallel to both L_{1} and L_{2}, and cycles are called horocycles;
elliptic if L_{1} and L_{2} are intersecting, in this case \mathcal{P} is a set of all geodesics passing through the common point of L_{1} and L_{2};
hyperbolic if L_{1} and L_{2} are disjoint, in this case \mathcal{P} is a set of all geodesics orthogonal to the common orthogonal of L_{1} and L_{2}, and cycles are called hypercycles.

Each Möbius transformation $g \in \operatorname{Möb}(\mathbb{D})$ is a movement of the hyperbolic plane, determines a certain pencil of geodesics \mathcal{P}, and its action is as follows: each geodesic L from the pencil \mathcal{P}, determined by g, moves along the cycles in \mathcal{C} to the geodesic $g(L) \in \mathcal{P}$, while each cycle in \mathcal{C} is invariant under the action of g.

Theorem 1 Given a pencil \mathcal{P} of geodesics, consider the set of symbols which are constant on corresponding cycles. The C^{*}-algebra generated by Toeplitz operators with such symbols is commutative.

That is, each pencil of geodesics generates a commutative C^{*}-algebra of Toeplitz operators.

Theorem 2 Given a Möbius transformation $g \in \operatorname{Möb}(\mathbb{D})$, consider the set of symbols which are invariant with respect to the one-parameter group generated by g. The C^{*}-algebra generated by Toeplitz operators with such symbols is commutative.

That is, each one-parameter group of Möbius transformations (\equiv maximal commutative subgroup of $\operatorname{Möb}(\mathbb{D})$) generates a commutative C^{*}-algebra of Toeplitz operators.

Model cases:

Parabolic case

Consider the upper half-plane Π in \mathbb{C}. Introduce the unitary operators
$U_{1}=F \otimes I: L_{2}(\Pi)=L_{2}(\mathbb{R}) \otimes L_{2}\left(\mathbb{R}_{+}\right) \longrightarrow L_{2}(\mathbb{R}) \otimes L_{2}\left(\mathbb{R}_{+}\right)$,
where $F: L_{2}(\mathbb{R}) \rightarrow L_{2}(\mathbb{R})$ is the Fourier transform

$$
(F f)(u)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i u \xi} f(\xi) d \xi
$$

and

$$
U_{2}: L_{2}(\Pi)=L_{2}(\mathbb{R}) \otimes L_{2}\left(\mathbb{R}_{+}\right) \longrightarrow L_{2}(\mathbb{R}) \otimes L_{2}\left(\mathbb{R}_{+}\right)
$$

which is defined by the rule

$$
U_{2}: \varphi(u, v) \longmapsto \frac{1}{\sqrt{2|x|}} \varphi\left(x, \frac{y}{2|x|}\right)
$$

Letting $\ell_{0}(y)=e^{-y / 2}$, we have $\ell_{0}(y) \in L_{2}\left(\mathbb{R}_{+}\right)$and $\left\|\ell_{0}(y)\right\|=1$. Denote by L_{0} the one-dimensional subspace of $L_{2}\left(\mathbb{R}_{+}\right)$generated by $\ell_{0}(y)$.

Theorem 3 The unitary operator $U=U_{2} U_{1}$ is an isometric isomorphism of the space $L_{2}(\Pi)=L_{2}(\mathbb{R}) \otimes L_{2}\left(\mathbb{R}_{+}\right)$ under which the Bergman space $\mathcal{A}^{2}(\Pi)$ is mapped onto $L_{2}\left(\mathbb{R}_{+}\right) \otimes L_{0}$,

$$
U: \mathcal{A}^{2}(\Pi) \longrightarrow L_{2}\left(\mathbb{R}_{+}\right) \otimes L_{0}
$$

Introduce the isometric imbedding

$$
R_{0}: L_{2}\left(\mathbb{R}_{+}\right) \longrightarrow L_{2}(\mathbb{R}) \otimes L_{2}\left(\mathbb{R}_{+}\right)
$$

by the rule $\quad\left(R_{0} f\right)(x, y)=\chi_{+}(x) f(x) \ell_{0}(y)$, where $\chi_{+}(x)$ is the characteristic function of \mathbb{R}_{+}.

Now the operator $R=R_{0}^{*} U$ maps the space $L_{2}(\Pi)$ onto $L_{2}\left(\mathbb{R}_{+}\right)$, and the restriction

$$
\left.R\right|_{\mathcal{A}^{2}(\Pi)}: \mathcal{A}^{2}(\Pi) \longrightarrow L_{2}\left(\mathbb{R}_{+}\right)
$$

is an isometric isomorphism. The adjoint operator

$$
R^{*}=U^{*} R_{0}: L_{2}\left(\mathbb{R}_{+}\right) \longrightarrow \mathcal{A}^{2}(\Pi) \subset L_{2}(\Pi)
$$

is an isometric isomorphism of $L_{2}\left(\mathbb{R}_{+}\right)$onto the subspace $\mathcal{A}^{2}(\Pi)$ of the space $L_{2}(\Pi)$. Moreover,

$$
\begin{array}{rll}
R R^{*}=I & : & L_{2}\left(\mathbb{R}_{+}\right) \longrightarrow L_{2}\left(\mathbb{R}_{+}\right) \\
R^{*} R=B_{\Pi} & : & L_{2}(\Pi) \longrightarrow \mathcal{A}^{2}(\Pi)
\end{array}
$$

Theorem 4 Let $a=a(v)$ be a measurable function on \mathbb{R}_{+}. Then the Toeplitz operator T_{a} acting on $\mathcal{A}^{2}(\Pi)$ is unitary equivalent to the multiplication operator $\gamma_{a} I=$ $R T_{a} R^{*}$, acting on $L_{2}\left(\mathbb{R}_{+}\right)$. The function $\gamma_{a}(x)$ is given by

$$
\gamma_{a}(x)=\int_{\mathbb{R}_{+}} a\left(\frac{y}{2 x}\right) e^{-y} d y, \quad x \in \mathbb{R}_{+}
$$

Berezin quantization on the hyperbolic plane

We consider the pair (\mathbb{D}, ω), where \mathbb{D} is the unit disk and

$$
\omega=\frac{1}{\pi} \frac{d x \wedge d y}{\left(1-\left(x^{2}+y^{2}\right)^{2}\right.}=\frac{1}{2 \pi i} \frac{d \bar{z} \wedge d z}{\left(1-|z|^{2}\right)^{2}}
$$

Poisson brackets:

$$
\begin{aligned}
\{a, b\} & =\pi\left(1-\left(x^{2}+y^{2}\right)\right)^{2}\left(\frac{\partial a}{\partial y} \frac{\partial b}{\partial x}-\frac{\partial a}{\partial x} \frac{\partial b}{\partial y}\right) \\
& =2 \pi i(1-z \bar{z})^{2}\left(\frac{\partial a}{\partial z} \frac{\partial b}{\partial \bar{z}}-\frac{\partial a}{\partial \bar{z}} \frac{\partial b}{\partial z}\right)
\end{aligned}
$$

Laplace-Beltrami operator:

$$
\begin{aligned}
\Delta & =\pi\left(1-\left(x^{2}+y^{2}\right)\right)^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \\
& =4 \pi(1-z \bar{z})^{2} \frac{\partial^{2}}{\partial z \partial \bar{z}}
\end{aligned}
$$

Introduce weighted Bergman spaces $\mathcal{A}_{h}^{2}(\mathbb{D})$ with the scalar product

$$
(\varphi, \psi)=\left(\frac{1}{h}-1\right) \int_{\mathbb{D}} \varphi(z) \overline{\psi(z)}(1-z \bar{z})^{\frac{1}{h}} \omega(z)
$$

The weighted Bergman projection has the form

$$
\left(B_{\mathbb{D}, h} \varphi\right)(z)=\left(\frac{1}{h}-1\right) \int_{\mathbb{D}} \varphi(\zeta)\left(\frac{1-\zeta \bar{\zeta}}{1-z \bar{\zeta}}\right)^{\frac{1}{h}} \omega(\zeta)
$$

Let $E=\left(0, \frac{1}{2 \pi}\right)$, for each $\hbar=\frac{h}{2 \pi} \in E$, and consequently $h \in(0,1)$, introduce the Hilbert space H_{\hbar} as the weighted Bergman space $\mathcal{A}_{h}^{2}(\mathbb{D})$.
For each function $a=a(z) \in C^{\infty}(\mathbb{D})$ consider the family of Toeplitz operators $T_{a}^{(h)}$ with (anti-Wick) symbol a acting on $\mathcal{A}_{h}^{2}(\mathbb{D})$, for $h \in(0,1)$, and denote by \mathcal{T}_{h} the *-algebra generated by Toeplitz operators $T_{a}^{(h)}$ with symbols $a \in C^{\infty}(\mathbb{D})$.
The Wick symbols of the Toeplitz operator $T_{a}^{(h)}$ has the form
$\widetilde{a}_{h}(z, \bar{z})=\left(\frac{1}{h}-1\right) \int_{\mathbb{D}} a(\zeta)\left(\frac{\left(1-|z|^{2}\right)\left(1-|\zeta|^{2}\right)}{(1-z \bar{\zeta})(1-\zeta \bar{z})}\right)^{\frac{1}{h}} \omega(\zeta)$.
For each $h \in(0,1)$ define the function algebra

$$
\widetilde{\mathcal{A}}_{h}=\left\{\widetilde{a}_{h}(z, \bar{z}): a \in C^{\infty}(\mathbb{D})\right\}
$$

with point wise linear operations, and with the multiplication law defined by the product of Toeplitz operators:

$$
\widetilde{a}_{h} \star \widetilde{b}_{h}=\left(\frac{1}{h}-1\right) \int_{\mathbb{D}} \widetilde{a}_{h}(z, \bar{\zeta}) \widetilde{b}_{h}(\zeta, \bar{z})\left(\frac{\left(1-|z|^{2}\right)\left(1-|\zeta|^{2}\right)}{(1-z \bar{\zeta})(1-\zeta \bar{z})}\right)^{\frac{1}{h}} \omega .
$$

The correspondence principle is given by

$$
\begin{aligned}
\widetilde{a}_{h}(z, \bar{z}) & =a(z, \bar{z})+O(\hbar) \\
\left(\widetilde{a}_{h} \star \widetilde{b}_{h}-\widetilde{b}_{h} \star \widetilde{a}_{h}\right)(z, \bar{z}) & =i \hbar\{a, b\}+O\left(\hbar^{2}\right) .
\end{aligned}
$$

Three term asymptotic expansion:

$$
\begin{aligned}
& \left(\widetilde{a}_{h} \star \widetilde{b}_{h}-\widetilde{b}_{h} \star \widetilde{a}_{h}\right)(z, \bar{z}) \\
= & i \hbar\{a, b\} \\
& +i \frac{\hbar^{2}}{4}(\Delta\{a, b\}+\{a, \Delta b\}+\{\Delta a, b\}+8 \pi\{a, b\}) \\
& +i \frac{\hbar^{3}}{24}\left[\{\Delta a, \Delta b\}+\left\{a, \Delta^{2} b\right\}+\left\{\Delta^{2} a, b\right\}+\Delta^{2}\{a, b\}\right. \\
& +\Delta\{a, \Delta b\}+\Delta\{\Delta a, b\} \\
& +28 \pi(\Delta\{a, b\}+\{a, \Delta b\}+\{\Delta a, b\}) \\
& \left.+96 \pi^{2}\{a, b\}\right]+o\left(\hbar^{3}\right)
\end{aligned}
$$

Corollary 5 Let $\mathcal{A}(\mathbb{D})$ be a subspace of $C^{\infty}(\mathbb{D})$ such that for each $h \in(0,1)$ the Toeplitz operator algebra $\mathcal{T}_{h}(\mathcal{A}(\mathbb{D}))$ is commutative.
Then for all $a, b \in \mathcal{A}(\mathbb{D})$ we have

$$
\begin{aligned}
\{a, b\} & =0 \\
\{a, \Delta b\}+\{\Delta a, b\} & =0 \\
\{\Delta a, \Delta b\}+\left\{a, \Delta^{2} b\right\}+\left\{\Delta^{2} a, b\right\} & =0
\end{aligned}
$$

Let $\mathcal{A}(\mathbb{D})$ be a linear space of smooth functions which generates for each $h \in(0,1)$ the commutative C^{*}-algebra $\mathcal{T}_{h}(\mathcal{A}(\mathbb{D}))$ of Toeplitz operators.

First term: $\{a, b\}=0$:

Lemma 6 All functions in $\mathcal{A}(\mathbb{D})$ have (globally) the same set of level lines and the same set of gradient lines.

Second term: $\{a, \Delta b\}+\{\Delta a, b\}=0$:

Theorem 7 The space $\mathcal{A}(\mathbb{D})$ consists of functions whose common gradient lines are geodesics in the hyperbolic geometry of the unit disk \mathbb{D}.

Third term: $\{\Delta a, \Delta b\}+\left\{a, \Delta^{2} b\right\}+\left\{\Delta^{2} a, b\right\}=0$:
Theorem 8 The space $\mathcal{A}(\mathbb{D})$ consists of functions whose common level lines are cycles.

Dynamics of spectra of Toeplitz operators

Let D be either the unit disk \mathbb{D}, or the upper half-plane Π in \mathbb{C}.

For a symbol $a=a(z), z \in D$, the Toeplitz operator $T_{a}^{(\lambda)}$ acts on $\mathcal{A}_{\lambda}^{2}(D)$ as follows

$$
T_{a}^{(\lambda)} \varphi=B_{D}^{(\lambda)} a \varphi, \quad \varphi \in \mathcal{A}_{\lambda}^{2}(D) .
$$

Theorem 9 Given any model pencil and a symbol $a \in$ $L_{\infty}(D)$, constant on corresponding cycles, the Toeplitz operator $T_{a}^{(\lambda)}$ is unitary equivalent to the multiplication operator $\gamma_{a, \lambda} I$, where
in the parabolic case: $a=a(y), y \in \mathbb{R}_{+}$,
$\gamma_{a, \lambda} I: L_{2}\left(\mathbb{R}_{+}\right) \rightarrow L_{2}\left(\mathbb{R}_{+}\right)$,

$$
\gamma_{a, \lambda}(x)=\frac{x^{\lambda+1}}{\Gamma(\lambda+1)} \int_{0}^{\infty} a(y / 2) y^{\lambda} e^{-x y} d y
$$

in the elliptic case: $a=a(r), r \in[0,1), \quad \gamma_{a, \lambda} I: l_{2} \rightarrow l_{2}$,

$$
\gamma_{a, \lambda}(n)=\frac{1}{\mathrm{~B}(n+1, \lambda+1)} \int_{0}^{1} a(\sqrt{r})(1-r)^{\lambda} r^{n} d r
$$

in the hyperbolic case: $a=a(\theta), \theta \in(0, \pi)$,
$\gamma_{a, \lambda} I: L_{2}(\mathbb{R}) \rightarrow L_{2}(\mathbb{R})$,
$\gamma_{a, \lambda}(\xi)=2^{\lambda}(\lambda+1) \frac{\left|\Gamma\left(\frac{\lambda+2}{2}+i \xi\right)\right|^{2}}{\pi \Gamma(\lambda+2) e^{\pi \xi}} \int_{0}^{\pi} a(\theta) e^{-2 \xi \theta} \sin ^{\lambda} \theta d \theta$.

Spectra

Continuous symbols

Let E be a subset of \mathbb{R} having $+\infty$ as a limit point, and let for each $\lambda \in E$ there is a set $M_{\lambda} \subset \mathbb{C}$. Define the set M_{∞} as the set of all $z \in \mathbb{C}$ for which there exists a sequence of complex numbers $\left\{z_{n}\right\}_{n \in \mathbb{N}}$ such that
(i) for each $n \in \mathbb{N}$ there exists $\lambda_{n} \in E$ such that $z_{n} \in M_{\lambda_{n}}$,
(ii) $\lim _{n \rightarrow \infty} \lambda_{n}=+\infty$,
(iii) $z=\lim _{n \rightarrow \infty} z_{n}$.

We will write

$$
M_{\infty}=\lim _{\lambda \rightarrow+\infty} M_{\lambda}
$$

and call M_{∞} the (partial) limit set of a family $\left\{M_{\lambda}\right\}_{\lambda \in E}$ when $\lambda \rightarrow+\infty$.

The a priori spectral information for L_{∞}-symbols:

$$
\operatorname{sp} T_{a}^{(\lambda)} \subset \operatorname{conv}(\text { ess-Range } a)
$$

Given a symbol $a \in L_{\infty}(D)$, constant on cycles, the Toeplitz operator $T_{a}^{(\lambda)}$ is unitary equivalent to the multiplication operator $\gamma_{a, \lambda} I$. Thus

$$
\operatorname{sp} T_{a}^{(\lambda)}=\overline{M_{\lambda}(a)}, \quad \text { where } \quad M_{\lambda}(a)=\text { Range } \gamma_{a, \lambda} .
$$

Theorem 10 Let a be a continuos symbol constant on cycles. Then

$$
\lim _{\lambda \rightarrow+\infty} \operatorname{sp} T_{a}^{(\lambda)}=M_{\infty}(a)=\text { Range } a .
$$

The set Range a coincides with the spectrum sp $a I$ of the operator of multiplication by $a=a(y)$, thus the another form of the above is

$$
\lim _{\lambda \rightarrow+\infty} \operatorname{sp} T_{a}^{(\lambda)}=\operatorname{sp} a I .
$$

Two continuous symbol (both are hypocycloids)

$$
\begin{aligned}
& a_{1}(r)=\frac{3}{4}\left(r+i \sqrt{1-r^{2}}\right)^{8}+\left(r-i \sqrt{1-r^{2}}\right)^{4} \\
& a_{2}(\theta)=\frac{3}{4} e^{4 i \theta}+e^{-2 i \theta}
\end{aligned}
$$

The images of $\gamma_{a_{1}, \lambda}$ and $\gamma_{a_{2}, \lambda}$ for $\lambda=0$.

The images of $\gamma_{a_{1}, \lambda}$ and $\gamma_{a_{2}, \lambda}$ for $\lambda=5$.

The images of $\gamma_{a_{1}, \lambda}$ and $\gamma_{a_{2}, \lambda}$ for $\lambda=12$.

The images of $\gamma_{a_{1}, \lambda}$ and $\gamma_{a_{2}, \lambda}$ for $\lambda=200$.

Piecewise continuous symbols

Let a be a piecewise continuous symbol constant on cycles and having a finite number m of jump points. Denote by $\bigcup_{j=1}^{m} I_{j}(a)$ the union of the straight line segments connecting the one-sided limit values of a at the jump points. Introduce

$$
\widetilde{R}(a)=\text { Range } a \cup\left(\bigcup_{j=1}^{m} I_{j}(a)\right) .
$$

Theorem 11 Let a be a piecewise continuous symbol constant on cycles. Then

$$
\lim _{\lambda \rightarrow \infty} \operatorname{sp}_{\lambda} T_{a}^{(\lambda)}=M_{\infty}(a)=\widetilde{R}(a)
$$

Piecewise continuous symbol

$$
a(r)= \begin{cases}e^{-i \pi r^{2}}, & r \in[0,1 / \sqrt{2}] \\ e^{i \pi r^{2}}, & r \in(1 / \sqrt{2}, 1]\end{cases}
$$

The sequence $\gamma_{a, \lambda}=\left\{\gamma_{a, \lambda}(n)\right\}$ for $\lambda=0$ and $\lambda=4$.

The sequence $\gamma_{a, \lambda}=\left\{\gamma_{a, \lambda}(n)\right\}$ for $\lambda=40$ and $\lambda=200$.

The symbol $a(\theta)$ and the function $\gamma_{a, \lambda}$ for $\lambda=1$.

The function $\gamma_{a, \lambda}$ for $\lambda=10$ and $\lambda=70$.

The function $\gamma_{a, \lambda}$ for $\lambda=500$ and the limit set $M_{\infty}(a)$.

Oscillating symbols

The functions $\gamma_{a_{1}, \lambda}$ and $\gamma_{a_{2}, \lambda}$ for λ equals to 0,10 , and 1000 .

