Commutative algebras of Toeplitz operators and Berezin quantization

N. Vasilevski

Departamento de Matemáticas CINVESTAV del I.P.N., Mexico City, México e-mail: nvasilev@math.cinvestav.mx http://www.math.cinvestav.mx/~nvasilev

 \mathbb{D} is the unit disk in \mathbb{C} ,

 $L_2(\mathbb{D})$ with the Lebesgue plane measure $d\mu(z) = dxdy$, Bergman space $\mathcal{A}^2(\mathbb{D})$ consists of analytic functions in \mathbb{D} , Bergman orthogonal projection $B_{\mathbb{D}}$ of $L_2(\mathbb{D})$ onto $\mathcal{A}^2(\mathbb{D})$:

$$(B_{\mathbb{D}}\varphi)(z) = \frac{1}{\pi} \int_{\mathbb{D}} \frac{\varphi(\zeta) \, d\mu(\zeta)}{(1 - z\overline{\zeta})^2},$$

Toeplitz operator T_a with symbol a = a(z):

$$T_a: \varphi \in \mathcal{A}^2(\mathbb{D}) \longmapsto B_{\mathbb{D}} a\varphi \in \mathcal{A}^2(\mathbb{D}).$$

Unit Disk as a Hyperbolic Plane

Consider the unit disk \mathbb{D} endowed with the hyperbolic metric

$$g = ds^2 = \frac{1}{\pi} \frac{dx^2 + dy^2}{(1 - (x^2 + y^2))^2}.$$

A geodesic, or a hyperbolic straight line, in \mathbb{D} is (a part of) an Euclidian circle or a straight line orthogonal to the boundary $S^1 = \partial \mathbb{D}$.

Each pair of geodesics, say L_1 and L_2 , lie in a geometrically defined object, one-parameter family \mathcal{P} of geodesics, which is called the *pencil* determined by L_1 and L_2 . Each pencil has an associated family \mathcal{C} of lines, called *cycles*, the orthogonal trajectories to geodesics forming the pencil. The pencil \mathcal{P} determined by L_1 and L_2 is called

parabolic if L_1 and L_2 are parallel, in this case \mathcal{P} is a set of all geodesics parallel to both L_1 and L_2 , and cycles are called *horocycles*;

elliptic if L_1 and L_2 are intersecting, in this case \mathcal{P} is a set of all geodesics passing through the common point of L_1 and L_2 ;

hyperbolic if L_1 and L_2 are disjoint, in this case \mathcal{P} is a set of all geodesics orthogonal to the common orthogonal of L_1 and L_2 , and cycles are called hypercycles.

Each Möbius transformation $g \in \text{Möb}(\mathbb{D})$ is a movement of the hyperbolic plane, determines a certain pencil of geodesics \mathcal{P} , and its action is as follows: each geodesic L from the pencil \mathcal{P} , determined by g, moves along the cycles in C to the geodesic $g(L) \in \mathcal{P}$, while each cycle in C is invariant under the action of g.

Theorem 1 Given a pencil \mathcal{P} of geodesics, consider the set of symbols which are constant on corresponding cycles. The C^{*}-algebra generated by Toeplitz operators with such symbols is commutative.

That is, each pencil of geodesics generates a commutative C^* -algebra of Toeplitz operators.

Theorem 2 Given a Möbius transformation $g \in Möb(\mathbb{D})$, consider the set of symbols which are invariant with respect to the one-parameter group generated by g. The C^* -algebra generated by Toeplitz operators with such symbols is commutative.

That is, each one-parameter group of Möbius transformations (\equiv maximal commutative subgroup of $M\"ob(\mathbb{D})$) generates a commutative C^* -algebra of Toeplitz operators.

Model cases:

Parabolic case

Consider the upper half-plane Π in \mathbb{C} . Introduce the unitary operators

 $U_1 = F \otimes I : L_2(\Pi) = L_2(\mathbb{R}) \otimes L_2(\mathbb{R}_+) \longrightarrow L_2(\mathbb{R}) \otimes L_2(\mathbb{R}_+),$ where $F : L_2(\mathbb{R}) \to L_2(\mathbb{R})$ is the Fourier transform

$$(Ff)(u) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-iu\xi} f(\xi) \, d\xi,$$

and

$$U_2: L_2(\Pi) = L_2(\mathbb{R}) \otimes L_2(\mathbb{R}_+) \longrightarrow L_2(\mathbb{R}) \otimes L_2(\mathbb{R}_+)$$

which is defined by the rule

$$U_2: \varphi(u,v) \longmapsto \frac{1}{\sqrt{2|x|}} \varphi(x, \frac{y}{2|x|}).$$

Letting $\ell_0(y) = e^{-y/2}$, we have $\ell_0(y) \in L_2(\mathbb{R}_+)$ and $\|\ell_0(y)\| = 1$. Denote by L_0 the one-dimensional subspace of $L_2(\mathbb{R}_+)$ generated by $\ell_0(y)$.

Theorem 3 The unitary operator $U = U_2U_1$ is an isometric isomorphism of the space $L_2(\Pi) = L_2(\mathbb{R}) \otimes L_2(\mathbb{R}_+)$ under which the Bergman space $\mathcal{A}^2(\Pi)$ is mapped onto $L_2(\mathbb{R}_+) \otimes L_0$,

$$U: \mathcal{A}^2(\Pi) \longrightarrow L_2(\mathbb{R}_+) \otimes L_0.$$

Introduce the isometric imbedding

 $R_0: L_2(\mathbb{R}_+) \longrightarrow L_2(\mathbb{R}) \otimes L_2(\mathbb{R}_+)$

by the rule $(R_0 f)(x, y) = \chi_+(x) f(x) \ell_0(y),$ where $\chi_+(x)$ is the characteristic function of \mathbb{R}_+ .

Now the operator $R = R_0^* U$ maps the space $L_2(\Pi)$ onto $L_2(\mathbb{R}_+)$, and the restriction

$$R|_{\mathcal{A}^2(\Pi)} : \mathcal{A}^2(\Pi) \longrightarrow L_2(\mathbb{R}_+)$$

is an isometric isomorphism. The adjoint operator

$$R^* = U^* R_0 : L_2(\mathbb{R}_+) \longrightarrow \mathcal{A}^2(\Pi) \subset L_2(\Pi)$$

is an isometric isomorphism of $L_2(\mathbb{R}_+)$ onto the subspace $\mathcal{A}^2(\Pi)$ of the space $L_2(\Pi)$. Moreover,

$$R R^* = I \quad : \quad L_2(\mathbb{R}_+) \longrightarrow L_2(\mathbb{R}_+),$$
$$R^* R = B_{\Pi} \quad : \quad L_2(\Pi) \longrightarrow \mathcal{A}^2(\Pi).$$

Theorem 4 Let a = a(v) be a measurable function on \mathbb{R}_+ . Then the Toeplitz operator T_a acting on $\mathcal{A}^2(\Pi)$ is unitary equivalent to the multiplication operator $\gamma_a I = R T_a R^*$, acting on $L_2(\mathbb{R}_+)$. The function $\gamma_a(x)$ is given by

$$\gamma_a(x) = \int_{\mathbb{R}_+} a(\frac{y}{2x}) e^{-y} dy, \quad x \in \mathbb{R}_+.$$

Berezin quantization on the hyperbolic plane

We consider the pair (\mathbb{D}, ω) , where \mathbb{D} is the unit disk and

$$\omega = \frac{1}{\pi} \frac{dx \wedge dy}{(1 - (x^2 + y^2)^2)} = \frac{1}{2\pi i} \frac{d\overline{z} \wedge dz}{(1 - |z|^2)^2}$$

Poisson brackets:

$$\{a,b\} = \pi (1 - (x^2 + y^2))^2 \left(\frac{\partial a}{\partial y}\frac{\partial b}{\partial x} - \frac{\partial a}{\partial x}\frac{\partial b}{\partial y}\right)$$
$$= 2\pi i (1 - z\overline{z})^2 \left(\frac{\partial a}{\partial z}\frac{\partial b}{\partial \overline{z}} - \frac{\partial a}{\partial \overline{z}}\frac{\partial b}{\partial z}\right).$$

Laplace-Beltrami operator:

$$\Delta = \pi (1 - (x^2 + y^2))^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$$
$$= 4\pi (1 - z\overline{z})^2 \frac{\partial^2}{\partial z \partial \overline{z}}.$$

Introduce weighted Bergman spaces $\mathcal{A}^2_h(\mathbb{D})$ with the scalar product

$$(\varphi,\psi) = \left(\frac{1}{h} - 1\right) \int_{\mathbb{D}} \varphi(z) \overline{\psi(z)} \left(1 - z\overline{z}\right)^{\frac{1}{h}} \omega(z).$$

The weighted Bergman projection has the form

$$(B_{\mathbb{D},h}\varphi)(z) = \left(\frac{1}{h} - 1\right) \int_{\mathbb{D}} \varphi(\zeta) \left(\frac{1 - \zeta\overline{\zeta}}{1 - z\overline{\zeta}}\right)^{\frac{1}{h}} \omega(\zeta).$$

Let $E = (0, \frac{1}{2\pi})$, for each $\hbar = \frac{h}{2\pi} \in E$, and consequently $h \in (0, 1)$, introduce the Hilbert space H_{\hbar} as the weighted Bergman space $\mathcal{A}_{h}^{2}(\mathbb{D})$. For each function $a = a(z) \in C^{\infty}(\mathbb{D})$ consider the family of Toeplitz operators $T_{a}^{(h)}$ with (anti-Wick) symbol a acting on $\mathcal{A}_{h}^{2}(\mathbb{D})$, for $h \in (0, 1)$, and denote by \mathcal{T}_{h} the *-algebra generated by Toeplitz operators $T_{a}^{(h)}$ with

symbols $a \in C^{\infty}(\mathbb{D})$.

The Wick symbols of the Toeplitz operator $T_a^{(h)}$ has the form

$$\widetilde{a}_h(z,\overline{z}) = \left(\frac{1}{h} - 1\right) \int_{\mathbb{D}} a(\zeta) \left(\frac{(1 - |z|^2)(1 - |\zeta|^2)}{(1 - z\overline{\zeta})(1 - \zeta\overline{z})}\right)^{\frac{1}{h}} \omega(\zeta).$$

For each $h \in (0, 1)$ define the function algebra

$$\widetilde{\mathcal{A}}_h = \{ \widetilde{a}_h(z, \overline{z}) : a \in C^\infty(\mathbb{D}) \}$$

with point wise linear operations, and with the multiplication law defined by the product of Toeplitz operators:

$$\widetilde{a}_h \star \widetilde{b}_h = \left(\frac{1}{h} - 1\right) \int_{\mathbb{D}} \widetilde{a}_h(z,\overline{\zeta}) \,\widetilde{b}_h(\zeta,\overline{z}) \left(\frac{(1 - |z|^2)(1 - |\zeta|^2)}{(1 - z\overline{\zeta})(1 - \zeta\overline{z})}\right)^{\frac{1}{h}} \omega_{\overline{z}}$$

The correspondence principle is given by

$$\widetilde{a}_h(z,\overline{z}) = a(z,\overline{z}) + O(\hbar),$$

$$(\widetilde{a}_h \star \widetilde{b}_h - \widetilde{b}_h \star \widetilde{a}_h)(z,\overline{z}) = i\hbar \{a,b\} + O(\hbar^2).$$

Three term asymptotic expansion:

$$\begin{split} &(\widetilde{a}_{h} \star \widetilde{b}_{h} - \widetilde{b}_{h} \star \widetilde{a}_{h})(z, \overline{z}) \\ = &i\hbar \{a, b\} \\ &+ i\frac{\hbar^{2}}{4} \left(\Delta \{a, b\} + \{a, \Delta b\} + \{\Delta a, b\} + 8\pi \{a, b\} \right) \\ &+ i\frac{\hbar^{3}}{24} \left[\{\Delta a, \Delta b\} + \{a, \Delta^{2}b\} + \{\Delta^{2}a, b\} + \Delta^{2} \{a, b\} \right. \\ &+ \Delta \{a, \Delta b\} + \Delta \{\Delta a, b\} \\ &+ 28\pi \left(\Delta \{a, b\} + \{a, \Delta b\} + \{\Delta a, b\} \right) \\ &+ 96\pi^{2} \{a, b\} \right] + o(\hbar^{3}) \end{split}$$

Corollary 5 Let $\mathcal{A}(\mathbb{D})$ be a subspace of $C^{\infty}(\mathbb{D})$ such that for each $h \in (0,1)$ the Toeplitz operator algebra $\mathcal{T}_h(\mathcal{A}(\mathbb{D}))$ is commutative.

Then for all $a, b \in \mathcal{A}(\mathbb{D})$ we have

$$\{a, b\} = 0,$$

$$\{a, \Delta b\} + \{\Delta a, b\} = 0,$$

$$\{\Delta a, \Delta b\} + \{a, \Delta^2 b\} + \{\Delta^2 a, b\} = 0.$$

Let $\mathcal{A}(\mathbb{D})$ be a linear space of smooth functions which generates for each $h \in (0, 1)$ the commutative C^* -algebra $\mathcal{T}_h(\mathcal{A}(\mathbb{D}))$ of Toeplitz operators.

First term: $\{a, b\} = 0$:

Lemma 6 All functions in $\mathcal{A}(\mathbb{D})$ have (globally) the same set of level lines and the same set of gradient lines.

Second term: $\{a, \Delta b\} + \{\Delta a, b\} = 0$:

Theorem 7 The space $\mathcal{A}(\mathbb{D})$ consists of functions whose common gradient lines are geodesics in the hyperbolic geometry of the unit disk \mathbb{D} .

Third term: $\{\Delta a, \Delta b\} + \{a, \Delta^2 b\} + \{\Delta^2 a, b\} = 0$:

Theorem 8 The space $\mathcal{A}(\mathbb{D})$ consists of functions whose common level lines are cycles.

Dynamics of spectra of Toeplitz operators

Let D be either the unit disk \mathbb{D} , or the upper half-plane Π in \mathbb{C} .

For a symbol $a = a(z), z \in D$, the Toeplitz operator $T_a^{(\lambda)}$ acts on $\mathcal{A}^2_{\lambda}(D)$ as follows

$$T_a^{(\lambda)}\varphi = B_D^{(\lambda)}a\varphi, \qquad \varphi \in \mathcal{A}_\lambda^2(D).$$

Theorem 9 Given any model pencil and a symbol $a \in L_{\infty}(D)$, constant on corresponding cycles, the Toeplitz operator $T_a^{(\lambda)}$ is unitary equivalent to the multiplication operator $\gamma_{a,\lambda}I$, where in the parabolic case: $a = a(y), y \in \mathbb{R}_+$,

In the parabolic case: $a = a(y), y \in \mathbb{R}_+$ $\gamma_{a,\lambda}I : L_2(\mathbb{R}_+) \to L_2(\mathbb{R}_+),$

$$\gamma_{a,\lambda}(x) = \frac{x^{\lambda+1}}{\Gamma(\lambda+1)} \int_0^\infty a(y/2) y^\lambda e^{-xy} dy;$$

in the elliptic case: $a = a(r), r \in [0, 1), \quad \gamma_{a,\lambda}I: l_2 \rightarrow l_2,$

$$\gamma_{a,\lambda}(n) = \frac{1}{\mathrm{B}(n+1,\lambda+1)} \int_0^1 a(\sqrt{r}) \left(1-r\right)^{\lambda} r^n dr;$$

in the hyperbolic case: $a = a(\theta), \ \theta \in (0, \pi),$ $\gamma_{a,\lambda}I : L_2(\mathbb{R}) \to L_2(\mathbb{R}),$

$$\gamma_{a,\lambda}(\xi) = 2^{\lambda} (\lambda+1) \frac{|\Gamma(\frac{\lambda+2}{2}+i\xi)|^2}{\pi \Gamma(\lambda+2) e^{\pi\xi}} \int_0^{\pi} a(\theta) e^{-2\xi\theta} \sin^{\lambda}\theta \, d\theta.$$

Spectra

Continuous symbols

Let E be a subset of \mathbb{R} having $+\infty$ as a limit point, and let for each $\lambda \in E$ there is a set $M_{\lambda} \subset \mathbb{C}$. Define the set M_{∞} as the set of all $z \in \mathbb{C}$ for which there exists a sequence of complex numbers $\{z_n\}_{n\in\mathbb{N}}$ such that

- (i) for each $n \in \mathbb{N}$ there exists $\lambda_n \in E$ such that $z_n \in M_{\lambda_n}$,
- (ii) $\lim_{n\to\infty} \lambda_n = +\infty$,
- (iii) $z = \lim_{n \to \infty} z_n$.

We will write

$$M_{\infty} = \lim_{\lambda \to +\infty} M_{\lambda},$$

and call M_{∞} the (partial) limit set of a family $\{M_{\lambda}\}_{\lambda \in E}$ when $\lambda \to +\infty$.

The *a priori* spectral information for L_{∞} -symbols:

$$\operatorname{sp} T_a^{(\lambda)} \subset \operatorname{conv}(\operatorname{ess-Range} a).$$

Given a symbol $a \in L_{\infty}(D)$, constant on cycles, the Toeplitz operator $T_a^{(\lambda)}$ is unitary equivalent to the multiplication operator $\gamma_{a,\lambda}I$. Thus

sp
$$T_a^{(\lambda)} = \overline{M_\lambda(a)}$$
, where $M_\lambda(a) = \text{Range } \gamma_{a,\lambda}$.

Theorem 10 Let a be a continuos symbol constant on cycles. Then

$$\lim_{\lambda \to +\infty} \operatorname{sp} T_a^{(\lambda)} = M_{\infty}(a) = \operatorname{Range} a.$$

The set Range *a* coincides with the spectrum sp aI of the operator of multiplication by a = a(y), thus the another form of the above is

$$\lim_{\lambda \to +\infty} \operatorname{sp} T_a^{(\lambda)} = \operatorname{sp} aI.$$

Two continuous symbol (both are hypocycloids)

Piecewise continuous symbols

Let *a* be a piecewise continuous symbol constant on cycles and having a finite number m of jump points. Denote by $\bigcup_{j=1}^{m} I_j(a)$ the union of the straight line segments connecting the one-sided limit values of *a* at the jump points. Introduce

$$\widetilde{R}(a) = \operatorname{Range} a \cup \left(\bigcup_{j=1}^{m} I_j(a)\right).$$

Theorem 11 Let a be a piecewise continuous symbol constant on cycles. Then

$$\lim_{\lambda \to \infty} \operatorname{sp}_{\lambda} T_a^{(\lambda)} = M_{\infty}(a) = \widetilde{R}(a).$$

Piecewise continuous symbol

The sequence $\gamma_{a,\lambda} = \{\gamma_{a,\lambda}(n)\}$ for $\lambda = 40$ and $\lambda = 200$.

The function $\gamma_{a,\lambda}$ for $\lambda = 500$ and the limit set $M_{\infty}(a)$.

The functions $\gamma_{a_1,\lambda}$ and $\gamma_{a_2,\lambda}$ for λ equals to 0, 10, and 1000.