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Convergence of averages

Flow φt(x) with initial condition x0:

µT (x0) =
1

T

∫ T

t=0

δφt(x0) dt

determines long term statistical properties of φt.

Best possible case: for typical flows there is a finite set M of

ergodic measures such that for almost all x0

µT (x0) → µ̃

for some ergodic (natural) measure µ̃ ∈ M that has nice properties.
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However there are systems of physical interest where this is not the

case; in particular

- Dynamics on phase spaces with invariant subspaces or other

constraints

- Dynamics with symmetries

Nightmare: can get open sets of flows such that

µT (x0)

does not converge for an open dense set of x0; those with robust

heteroclinic-type attractors.
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Robust heteroclinic attractors

heteroclinic connection q(t) from equilbrium p− to p+ is a solution

of the ODE with

q(t) → p±

as t → ±∞.

heteroclinic cycle is a sequence of heteroclinic connections between

equilibria such that one can return to any equilibrium via a sequence

of connections.

Can find robust cycles where equilibria replaced by other transitive

sets.
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Robust heteroclinic cycles to equilibria

Simplest robust attracting cycle on R
3 with symmetry Γ generated by

reflections in coordinate planes and cycling the axes (x, y, z).

ẋ = (λ + ax2 + by2 + cz2)x

ẏ = (λ + ay2 + bz2 + cx2)y

ż = (λ + az2 + bx2 + cy2)z

For open set of a, b, c, λ this has a heteroclinic cycle

- attracts an open dense set of initial conditions

- persists under any small enough perturbation in CΓ.
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In first octant x ≥ 0, y ≥ 0, z ≥ 0 get equilibria that are attractors

within the axes but have one-dimensional unstable manifolds.

(a = −1,b = −0.98, c = −1.05)
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(Leonard, May, Busse, Guckenheimer, Holmes)
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Example 1

System of globally coupled oscillators [Hansel et al, Kori &

Kuramoto] with symmetry Sn:

θ̇i = ω +
1

n

n
∑

j=1

g(θi − θj)

where g(x) = − sin(x + α) + b sin(2x + β).

Much richer dynamics than Kuramoto; ‘slow oscillations’ caused by

noise-perturbed heteroclinic cycles.
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Five oscillator case: for open set of parameters attractor as below

where boxes represent synchronized clusters.
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General structure of heteroclinic-like networks

For x, y ∈ Σ and ε > 0 there is an ε-pseudo orbit joining x to y if there

is

{x = x0, y0, x1, . . . , xn, yn = y} ⊂ Σ

and ti ≥ 1, 0 ≤ i < n s.t.

ρ(xi, yi) < ε,

xi+1 = φti
(yi).

for 0 ≤ i < n.

Suppose given x, y and any ε there is an ε-p.o. from x to y then we

say x → y.

A set X is chain recurrent if x → y for any x, y ∈ X.
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Structure of heteroclinic networks [A+Field]

Consider Σ a connected & compact invariant set for continuous flow

φt : Σ → Σ. (1)

Interesting case is when Σ fails to have a dense orbit (not transitive)

but is chain recurrent.

We say Σ is indecomposable if all points are nontrivially chain

recurrent to themselves.

- If Σ is an ω-limit set then it is indecomposable.

- Chain recurrent + connected ⇒ indecomposable.
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For x ∈ Σ, let

λ(x) = limitst→∞{φ±t(x)}

union of α and ω-limits. Say Σ is recurrent (or transitive) if there is

an x ∈ Σ such that λ(x) = Σ.
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For any S ⊂ Σ invariant, define

R(S) = {x ∈ S : x ∈ λ(x)}

the set of recurrent points (of S) and let

C(S) = S \ R(S)

the set of connections in S.

If R(Σ) is a finite union of disjoint, compact, connected flow invariant

subsets then say Σ has a finite nodal set.

For S ⊂ Σ compact define

λ(S) = ∪x∈Sλ(x),
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Note that if X is invariant then

λ(X) ⊂ X

If X is recurrent then

λ(X) = X.

Suppose there is an N such that

λN−1(x) 6= λN (Σ) = R(Σ)

then say Σ has depth N .
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Definition We say Σ is a heteroclinic network if

(a) Σ is indecomposable

(b) Σ has finite nodal set

(c) Σ has finite depth

Theorem [A, Field, 1999]

Let Σ be a heteroclinic network of depth N . For N ≥ n > 0,

Σn := λn(Σ)

is a finite union of heteroclinic networks each with depth less than or

equal to N − n.
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Such networks may be Asymptotically stable.

There may be an open set of x ∈ R
n such that

ω(x) = Σ.

However may have nontrivial ‘selection of connections’ resulting in

ω(x) ( Σ
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Consequences for ergodic averages Recall that

µT (x0) =
1

T

∫ T

t=0

δφt(x0) dt.

Easy: If x0 has ω(x0) ⊂ Σ where Σ is a heteroclinic network with

recurrent set R then

L(x0) = limits{µT (x0) : T → ∞} ⊂ Conv(Merg(R)).

Hard: Which subset is this? (e.g. Sigmund, Hofbauer,

Gaunersdorfer) What is the dynamics on Conv(Merg(R))?

What I believe Generic smooth flows on finite dimensions have

attractors composed of finite depth heteroclinic networks. On the

networks there is a finite set M of ergodic measures such that

L(x0) ⊂ Conv(M)

for almost every x0.
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A depth 2 example (Chawanya)

Flow given by replicator dynamics on 5-simplex. Has connection from

equilibrium to ‘child cycle’.

Not representable as transitive graph between equilibria! Infinite

number of attracting p.o.s near cycle.
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Example 2: a new robust depth 2 attractor from convection

(work with O. Podvigina)

Boussinesq convection problem in domain (x, y, z) ∈ [0, L] × [0, L] × [0, 1]

∂v

∂t
= v × (∇× v) + P∆v + PRθez −∇p (2)

with incompressibility

∇ · v = 0 (3)

and
∂θ

∂t
= −(v · ∇)θ + ∆θ. (4)
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Boundary conditions: vx;z = vy;z = vz = 0, θ = 0 at z = 0, 1.

Periodic boundary conditions in x, y.
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Stability

[Cox, Matthews, Proctor, Hirschberg, Knobloch] For fixed Prandtl

number P there are two parameters to this problem: L and R. Trivial

(conduction) state stable for R < Rc = (k2 + π2)3/k2 at which point it

becomes unstable to convection rolls.
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Examine stability with L that gives instability to rolls of wavelength L

and to rolls of wavelength L
√

2; planforms of lines of equal vz:

Large rolls (LR) Small rolls (SR)

Unstable modes have form

z1e
2πix/L + z2e

2πiy/L + z3e
2πi(x+y)/L + z4e

2πi(x−y)/L + c.c.
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Normal form at bifurcation

(Truncated to cubic order)

ż1 = λ1z1 + z1(A1|z1|2 + A2|z2|2 + A3(|z3|2 + |z4|2)) + A4z̄1z3z4,

ż2 = λ1z2 + z2(A1|z2|2 + A2|z1|2 + A3(|z3|2 + |z4|2)) + A4z̄2z3z̄4,

ż3 = λ2z3 + z3(A5|z3|2 + A6|z4|2 + A7(|z1|2 + |z2|2)) + A8(z
2
2z4 + z2

1 z̄4),

ż4 = λ2z4 + z4(A5|z4|2 + A6|z3|2 + A7(|z1|2 + |z2|2)) + A8(z̄2
2z3 + z2

1 z̄3),

(5)

zi amplitudes of roll modes;

Ai parameters determined by centre manifold reduction;

λi correspond to perturbations to L and R.
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Note presence of symmetries

T2 ×s D4 × Z2.

Physical symmetries of the domain

T2 ×s D4

Boussinesq symmetry Z2 generated by z 7→ 1 − z.

Forces the existence of more than 20 different types of

symmetry-invariant subspace.
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Bifurcation behaviour

Set P = 1 and take λ1 = cos θ and λ2 = sin θ. (NZ =
√

∑

k |zk|2)
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Bifurcation to stable solutions:

(LR) (x, 0, 0, 0) (WR3) (x, x, iy, 0) (SR) (0, 0, x, 0)

for θ < 1.31 for 1.344 < θ < 1.446 for θ > 1.446
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What about θ ∈ (1.31, 1.344)?
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- Robust depth 2 heteroclinic network for this system.

- Several of the connections are multi-dimensional.

- Not completed: determination of largest chain recurrent set

containing this network.

- Expect most trajectories to select the most unstable

eigendirection.

- However multiple positive eigenvalues caused by symmetry!.

Page 30



Dynamics without ergodicity
Peter Ashwin University of Exeter

Product dynamics for heteroclinic attractors

Given two periodic attractors L1 and L2 of different flows, generically

L1 × L2 is (minimal) attractor for product system.

What about product of two heteroclinic attractors?

Q

Σ

Can characterise attraction in terms of ‘geometric slowing down

ratio’ λ > 1.
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Consider a product of two planar ODEs with homoclinic attractors

Σ1, Σ2 to equilibria Q1, Q2.

Theorem [A + Field 2005] The Milnor attractor for the product of

two systems is typically NOT the product of the attractors, rather it

is

(Q1 × Σ2) ∪ (Σ1 × Q2).

This is because for typical λ1 > 1, λ2 > 1 and almost all a, b the

sequence

{aλn
1 + bλm

2 : (n, m) ∈ N2}

typically has no accumulation points.
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Some conclusions

Get robust non-ergodic behaviour in models for

- Fluid flows/magnetohydrodynamics

- Population/economic models

- Climate systems (D Cromellin)

- Coupled systems esp neuroscience (winnerless competition)

Singular behaviour on addition of noise; very poorly understood in

general.

- Effect of noise on choice of trajectory?

- Effect of noise on choice of ‘averaged’ measure.
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Heteroclinics between other invariant sets

Cycling chaos

System with same symmetry as Guckenheimer-Holmes example can

get robust heteroclinic cycle between chaotic saddles. [Dellnitz & al]
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Attracted trajectory switches between a number of chaotic sets for

with ‘asymptotic slowing down’ of switching
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