STATIONARY STATES AND FLUCTUATIONS

E.G.D. Cohen
The Rockefeller University
2006

I. STATIONARY STATES

 In a Stationary State macroscopic (=average) properties of a system do not change with time.

 Microscopic particle motion continues unabatedly and causes fluctuations around macroscopic (=average) properties.

II. Equilibrium + Fluctuations around it

- 1. Equilibrium is simplest stationary state.
- 2. Characterized by T, p, ρ etc.
- 3. Fluctuations around equilibrium guided by .
 Onsager's Hypothesis

"The average decay of a fluctuation away from equilibrium back to equilibrium, follows the ordinary macroscopic linear law" • Thus for an adiabatically insulated system, characterized by the macroscopic properties A_1, A_2, \ldots, A_n , with fluctuations from their equilibrium values $a_1, a_2, \ldots a_n$, the average average decay back to equilibrium follows:

$$ullet$$
 $ar{\dot{a}}_i = J_i = \sum_{k=1}^n L_{ik} X_k \;\; (i=1,...,n)$

 $\overline{\dot{a}_i}$ = average decay of fluctuation away from equilibrium;

 J_i = macroscopic current;

 L_{ik} = Linear transport coefficient;

 $X_k = \text{force (gradient)};$

The average is taken with the microcanonical ensemble

$$P(a_1....a_n)\prod_{i=1}^n da_i = rac{\exp(\Delta S/k)\prod_{i=1}^n da_i}{\int \exp(\Delta S/k)\prod_{i=1}^n da_i}$$

Consequences of Onsager's Hypothesis:

- Onsager's reciprocal relations are between $\underline{\text{linear}}$ transport coefficients L_{ik} : i.e. a linear relation between currents J_i and gradients X_k : $J_i = \sum_k L_{ik} X_k$.
- In a mixture with components 1,..,i,..,k,...,n: the Onsager relations are:

$$L_{ik} = L_{ki}$$

They are based on the time reversal invariance of the (microscopic) equations of motion.

- Green-Kubo formulae for linear transport coefficients.
- Fluctuation Dissipation Relation = relation of equilibrium fluctuations and linear transport coefficients.

Irreversible Thermodynamics:

- Onsager's Hypothesis makes it possible to construct a purely macroscopic theory of irreversible processes.
- That is: generalization of Thermodynamics of systems in equilibrium to a Thermodynamics of Non-equilibrium systems, close to equilibrium, but where irreversible processes take place.
- The system is then still in local equilibrium, where it can be partitioned in "physically infinitesimal" cells, in each of which, i.e. locally, the usual thermodynamic relations of equilibrium hold.

• In particular, in any local cell at position \vec{r} and at time t, the specific entropy s is the same function of the specific internal energy u and the specific volume $v=1/\rho$, as in equilibrium:

$$s = s(u, \rho)$$

and

$$Trac{ds}{dt}=rac{du}{dt}+prac{dv}{dt}$$

ullet Here d/dt is the barycentric (or center of mass) time derivative and s,u and v=1/
ho are all per unit mass.

• Using the hydrodynamic equations for du/dt and $d\rho/dt$ - which are based on local equilibrium, the conservation laws and the linear transport laws - gives a local form of the Second Law as an entropy balance equation:

$$ho rac{ds}{dt} = -div J_s + \sigma$$
 with $\sigma = \sum_i J_i X_i$ and $J_i = \sum_k L_{ik} X_k$

- Here ρ is the mass density, J_s the (baricentric) entropy flow per unit area and time and $\sigma>0$ the entropy production per unit volume and time.
- These equations together with Onsager's Hypothesis form the basis of Irreversible Thermodynamics.

ons in Irrever. Thermodynamics

ons from "fluctuating namics" by adding (Landau-Lifshitz) ng terms to the hydrodynamical s.

rms are due to spontaneously d (random) local stresses and heat the fluid, not related to the ppic gradients (linear laws) in the ppic hydrodynamic equations, but e microscopic motion of the fluid

(Fluctuating) Hydrodynamic Equations

$$egin{aligned} rac{d
ho}{dt} &= -
ho
abla\cdotec{v} \ (ext{continuity equation}) \
horac{dec{v}}{dt} &=
abla\cdotec{P} \ (ext{equation of motion}) \
horac{du}{dt} &= -
abla\cdotec{J}_q - p
abla\cdotec{v} - \left(ec{P} - pec{U}
ight):
ablaec{v} \ (ext{energy equation}) \end{aligned}$$

- $\vec{\vec{P}}$ = Stress Tensor + $\vec{\vec{P}}$; $\vec{\vec{P}} \rightarrow \vec{\vec{s}}$
- $ec{J}_q$ = Heat current + $ilde{ec{J}}_q$; $ilde{ec{J}}_q
 ightarrow ec{g}$
- p= pressure
- ρ= mass density
- ullet $ec{ec{U}}$ = unit tensor
- : tensor product

Conditions: 1. Local Equilibrium

- 2. Conservation Laws
- 3. Linear Transport Laws.

Hydrodynamic Fluctuations

Liftshitz:

t flux:

$$\overline{(ec{r_2},t_2)}=2\kappa T^2\delta_{ik}\delta(t_1-t_2)\delta(ec{r_1}-ec{r_2})$$

an similarly obtain formulae for the etween the components of the ss tensor:

$$egin{aligned} \overline{n(ec{r_2},t_2)} &= 2T[\eta(\delta_{il}\delta_{km}+\delta_{im}\delta_{kl}) \ &+ (\zeta-rac{2}{3}\eta)\delta_{ik}\delta_{lm}] \ & imes \delta(t_1-t_2)\delta(ec{r_1}-ec{r_2}) \end{aligned}$$

Non-Eq. Stationary States "far" from Equil.

- These states cannot be characterized by local equilibrium quantities, like T, u, ρ , alone, but also by stationary <u>currents</u> of mass, momentum and energy, which, in general, will not obey linear relations between currents and gradients of T, u, ρ .
- Their probability distribution is not described by a modified (<u>static</u>) Gibbs ensemble, but by a (<u>dynamic</u>) Sinai-Ruelle-Bowen (SRB) distribution, at least if the system is smooth and very chaotic (Anosov-like).

cription of Obtaining SRB Distr.

oticity of the system is based on the icity of the points representing the n phase space.

s, on one of which two separated pints near a fixed phase point tially approach each other, while on manifold two such points will tially separate from each other.

n of all the first manifolds is called a manifold (s), while that of the latter atable manifold (u), in phase space.

 $\}$ distribution can be obtained by a partition of the phase space of the 1 "parallelograms", $\{E_j\}$, based on rbolicity of the phase space.

"horizontal sides" of the cells or grams form the unstable manifold, tical sides" form the stable

of the cells is determined by a $(T, S)^T$ of their size $(T)^T$ or $(T)^T$

• Now each cell E_j in phase space is given a statistical weight equal to the <u>inverse</u> of a characteristic phase space volume expansion rate (along the unstable (expanding) manifold) $\bar{\wedge}_{u,\tau}^{-1}(x_j)$ associated with this cell.

ullet Consider thereto a phase point moving during a discrete time au along a phase space trajectory from - au/2-1 to au/2, which goes through the center x_j of the cell E_j .

- Considering a small phase space volume A around the initial point at $-\tau/2-1$, all points in A will go via phase space trajectories to corresponding points in the phase space volume B around the final point at $+\tau/2$.
- The larger the phase space volume expansion $\Lambda_{u,\tau}(x_j)$ in the direction of the unstable manifold u is in time τ , i.e. the larger L_B/L_A , the more the phase space trajectories will tend to avoid (bypass) the point x_j .
- The inverse of this ratio $\sim L_A/L_B \sim \Lambda_{u,\tau}^{-1}(x_j)$ will therefore be a measure of the "eagerness" or frequency of the phase space trajectories to be near x_j , i.e. that the system will visit the cell E_j .

- This inverse expansion rate is a measure of the stability of the trajectories near x_j .
- Weighing the Markov partitions in phase space this way, one obtains in a <u>dynamical</u> fashion the probability to find the system anywhere in phase.
- The average of a smooth function F(x), where x is a point in phase space, is then given by the following SRB measure:

$$\int_{\mathcal{C}} \mu_{SRB}(dx) F(x) = \lim_{T \geq au/2 o \infty} rac{\sum_{j} ar{\wedge}_{u, au}^{-1}(x_{j}) F(x_{j})}{\sum_{j} ar{\wedge}_{u, au}^{-1}(x_{j})}$$

• $\mu_{SRB} = \mu_{microcan}$ in equilibrium.

• Here $\int_{\mathcal{C}}$ is an integral over phase space and the phase space weight $\bar{\wedge}_{u,\tau}^{-1}(x_j)$ is $\ln \det |\partial S_{\tau}(x)_u|$ i.e. the logarithm of the determinant of the Jacobian matrix of the map $\partial S_{\tau}(x)_u$, giving the expansion rate over a time τ along the unstable manifold, where S_{τ} represents the dynamics of the system over a time τ .

Fluctuations Far From Equilibr. (The CFT)

- A Fluctuation theorem has been derived based on the SRB distribution, for the heat fluctuations of a reversible, very chaotic, smooth (Anosov-like) many particle system in a non-equilibrium stationary state.
- To understand this Conventional Fluctuation Theorem (<u>CFT</u>), one considers a long trajectory in the phase space of the system in a non-equilibrium stationary state.

- 1. One cuts this trajectory in many segments, on each of which the system spends an equal time τ .
- 2. One determines the heat produced Q_{τ} or absorbed $-Q_{\tau}$ on each segment and makes a histogram of them.
- 3. This leads to a <u>probability distribution</u> $P(Q_{\tau})$ for the heat production or absorption on a trajectory segment of duration τ .

• This has led to the following (CFT): Conventional Heat Fluctuation Theorem for smooth potentials when $\tau \to \infty$:

$$\frac{P(Q_\tau)}{P(-Q_\tau)} = \exp[\beta Q_\tau]$$
 for $Q_\tau < p^* \overline{Q}_\tau$

- Here \overline{Q}_{τ} is the <u>average</u> heat produced in the stationary state over all segments τ , for positive times t.
- Extension of Second Law of Thermodynamics.

• In terms of a scaled Q_{τ} : $p=Q_{\tau}/\bar{Q}_{\tau}$, the CFT reads then for smooth potentials and $\tau \to \infty$:

$$\frac{\pi_{\tau}(p)}{\pi_{\tau}(-p)} = \exp[p\tau\sigma_{+}] \text{ for } p < p^{*}$$

• Here p^* is a limiting magnitude of p related to the dynamics of the system and $\sigma_+ = \beta \overline{Q}_{\tau}/\tau$, the average entropy production rate $(\beta = 1/k_BT)$.

• Introducing a Fluctuation Function, $F_{\tau}(p)$, the CFT can be written for $\tau \to \infty$ as:

$$F_{ au}(p) \equiv rac{1}{eta ar{Q}_{ au}} \ln rac{\pi_{ au}(p)}{\pi_{ au}(-p)} = p < p^*$$

i.e. $F_{\tau}(p)$ is a straight line with slope 1 as a function of p.

- Gallovotti and Ruelle derived the Onsager and GK relations <u>from</u> the CFT, if the system is near equilibrium, in agreement with IT.
- In this form the <u>CFT</u> has been confirmed both by laboratory and computer experiments.

Extended Heat Fluc. Theorem. (EFT)

- Very recently the CFT has been extended, from smooth Anosov-like systems, using the SRB distribution, to systems of particles interacting with singular potentials e.g. with singularities as for the LJ potential at r=0 or for the harmonic potential for $x\to\infty$.
- This has led formally to an Extended FT (EFT) that goes beyond the CFT and holds for fluctuations: $p=Q_{\tau}/\bar{Q}_{\tau} \leq p^{**}$.
- The EFT has been obtained explicitly for a Brownian particle system. It is identical to that of a parallel electric circuit, for which a laboratory verification of the EFT has been obtained.

Brownian particle Fluctuations

2. Energy Conservation:

$$W_{ au} = Q_{ au} + \Delta U_{ au}$$
 or $Q_{ au} = W_{ au} - \Delta U_{ au}$

3. $W_{ au}=$ total work done on system in time au $Q_{ au}=$ heat = friction energy dissipated by B into water in time au (stochastic)

 $\Delta U_{ au} = U_{ au+t} - U_t = ext{potential energy difference}$ of the particle in time au (deterministic)

Brownian particle Fluctuations

Based on overdamped (m=0) Langevin equation:

$$0 = -\alpha \dot{\vec{x}}_t - \kappa (\vec{x}_t - \vec{x}_t^*) + \vec{\zeta}_t$$
Friction linear force fluctuations dissipative deterministic stochastic

ullet Harmonic potential: $U_t=rac{\kappa}{2}|ec{x}_t-ec{x}_t^*|^2$; $ec{x}_t^*=ec{v}^*t$ =position of the pot. min.

White noise
$$ec{ec{\zeta}_t}$$
: $ec{ec{\zeta}_t} = 0$; $ec{ec{\zeta}_t ec{\zeta}_{t'}} = rac{2lpha}{eta} \delta(t-t') ec{ec{U}}$

Relaxation time: $au_r = rac{lpha}{\kappa}$

Dimensionless units:

$$\alpha = \kappa = \beta = 1 \rightarrow \tau_r = 1$$

ANALOGY: BROWNIAN MOTION AND ELECTRIC CIRCUITS .

Parallel Circuit

 δV_t = Nyquist noise at time t ("stochastic")

R = resistor

 i_t = current through $m{R}$ at time t

C = capacitor ("mechanical")

I = current source

Analogy

a) Brownian motion \rightarrow Langevin Equation with m=0 and harmonic potential:

$$0 = -lpha\dot{ec{x}}_t - \kappa(ec{x}_t - ec{v}^*t) + ec{\zeta}_t$$

b) Parallel circuit ightarrow Langevin equation with L=0 and $V_{ab}=V_{cd}$:

$$0 = -R\dot{q}_t - rac{1}{C}(q_t - It) - \delta V_t$$

c) Analogy:

Brown.	$ec{x}_t$	$\dot{ec{x}}_t$	$ec{v}^*$	$ec{\zeta}_t$	α	κ
Par. Circuit	q_t	i_t	I	$-\delta V_t$	R	$\frac{1}{C}$

EFT: Extended (Heat) FT (from SPM)

Fluctuation function:

$$F_{ au}(p) = rac{1}{eta ar{Q}_{ au}} \ln \left[rac{\pi_{ au}(p)}{\pi_{ au}(-p)}
ight]$$

versus

$$p=rac{Q_{ au}}{ar{Q_{ au}}}$$

result:

$$F_{ au}(p)=egin{cases} p+O(rac{1}{ au}) \ p-rac{1}{4}(p-1)^2+O(rac{1}{ au}) \ 2+\left[rac{8(p-3)}{ au}
ight]^rac{1}{2}+O(rac{1}{ au}) \end{cases} ext{ for } egin{cases} 0$$

* CFT for $au o \infty$ with $p^* = 1$.

** EFT for $au o \infty$ with $p^{**} o \infty$.

FOR PARALLEL ELECTRIC CIRCUITS

N. Garnier and S. Ciliberto

PRE. <u>71</u>, 060101 (2005)

