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L. STATIONARY STATES

1. In a Stationary State macroscopic
(=average) properties of a system do not
change with time.

2. Microscopic particle motion continues
unabatedly and causes fluctuations around
macroscopic (=average) properties.
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II. Equilibrium + Fluctuations around it

1. Equilibrium is simplest stationary state.

2. Characterized by T, p, p etc.

3. Fluctuations around equilibrium guided by,
' Onsager’s Hypothesis]

“The average decay of a fluctuation away
from equilibrium back to equilibrium, follows
the ordinary macroscopic linear law”
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e Thus for an adiabatically insulated system,
characterized by the macroscopic properties
Aj,A,,...., A, with fluctuations from their
equilibrium values ay, as,, ...a,, the average
average decay back to equilibrium follows-

® E@ = Jz — Z;::l szXk (Z — 1, ...,’I’L)

a; = average decay of fluctuation away from
equilibrium;

J; = macroscopic current:

Ly, = Linear transport coefficient;

X}, = force (gradient);

e The average is taken with the
microcanonical ensemble
i AS/k) T . da;
P(al....an) H dai e eXp( / )H?’:;l -
J exp(AS/k) II;-, da;

p=1
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Consequences of Onsa ger’s Hypothesis:

e Onsager’s reciprocal relations are between
linear transport coefficients L. i.e. a linear
relation between currents .J; and gradients
ka oy = Zk L@-ka.

—%"
e In a mixture with components

1,.,%,.,k,..,n: the Onsager relations are:
Lix = Ly;
They are based on the time reversal

invariance of the (microscopic) equations of
motion.

—— e
e Green-Kubo formulae for linear transport

coefficients.

e Fluctuation - Dissipation Relation = relation
of equilibrium fluctuations and linear
transport coefficients.
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Irreversible Thermodynamics:

e Onsager’s Hypothesis makes it possible to
construct a purely macroscopic theory of
irreversible processes.

e That is: generalization of Thermodynamics
of systems in equilibrium to a
Thermodynamics of Non-equilibrium
systems, close to equilibrium, but where
irreversible processes take place.

e The system is then still in local equilibrium,
where it can be partitioned in “physically
infinitesimal” cells, in each of which, i.e.
locally, the usual thermodynamic relations of
equilibrium hold.




e In particular, in any local cell at position
and at time ¢, the specific entropy s is the
same function of the specific internal energy
u and the specific volume v = 1/p, asin
equilibrium:

s = s(u, p)
and

Tds_du_{_'dv
dt  dt Pt

* Here d/dt is the barycentric (or center of
mass) time derivative and s,uandv =1/p
are all per unit mass.




e Using the hydrodynamic equations for
du/dt and dp/dt - which are based on
local equilibrium, the conservation laws and
the linear transport laws - gives a local form
of the Second Law as an
eéntropy balance equation:

ds

— = —divJ,
pdt i

with o = Zz J; X, and oy = Zk L. X,

e Here p is the mass density, J, the
(baricentric) entropy flow per unit area and

time and & > 0 the entropy production per
unit volume and time.

e These equations together with Onsager’s
Hypothesis form the basis of Irreversible
k Thermodynamics.




ns in Irrever. Thermodynamics

ons from “fluctuating

1amics” by adding (Landau-Lifshitz)
Ig terms to the hydrodynamical

S.

rms are due to spontaneously

d (random) local stresses and heat
the fluid, not related to the

dpic gradients (linear laws) in the
Jpic hydrodynamic equations, but
e microscopic motion of the fluid
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(Fluctuating) Hydrod ynamic Equations

dp - e :

i —pV - ¥ (continuity equation)

dv = : .
pgt— = V .P (equation of motion)

du - . = = .
p:i; = —=V.-J,—pV .7 — (P—-pU) : VU

(energy equation)
@ ﬁ: Stress Tensor + ﬁ; 1_3—> 5
o J,=Heatcurrent + J,; J,— g
® D= pressure
® p= mass density
» l?= unit tensor

e : tensor product

Conditions: 1. Local Equilibrium

2. Conservation Laws

3. Linear Transport Laws. j
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Hydrodynamic Fluctuations

Liftshitz:

» between the components of the
t flux:

:T_ﬁ, tz) = 2K,T252k5(t1 pemy tg)(s(’l"_i = 'Fé)

an similarly obtain formulae for the
)retween the components of the °
ss tensor: |

—

(T2, t2) = 2T[0(8:10km, + OimOki)

2
+ (¢ — 577)5z'k5zm]
X §(ti — 1807 — 73)
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Non-Eq. Stationary States “far” from Equil.

e These states cannot be characterized by
local equilibrium quantities, like T, u,p,
alone, but also by stationary currents of
mass, momentum and energy, which, in
general, will not obey linear relations
between currents and gradients of T, u, p.

e Their probability distribution is not described
by a modified (static) Gibbs ensemble, but
by a (dynamic) Sinai-Ruelle-Bowen (SRB)
distribution, at least if the system is smooth
and very chaotic (Anosov-like).
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ription of Obtaining SRB Distr.

oticity of the system is based on the
icity of the points representing the
N phase space.

ch point in phase space has two

S, on one of which two separated
dints near a fixed phase point

tially approach each other, while on
“manifold two such points will

tially separate from each other.

n of all the first manifolds is called
2 manifold (s), while that of the latter
stable manifold (u), in phase space.
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3 distribution can be obtained by a
partition of the phase space of the

1 “parallelograms”, { E;}, based on
rbolicity of the phase space.

“horizontal sides” of the cells or
Jrams form the unstable manifold,.
tical sides” form the stable

of the cells is determined by a
3r T', so that for T — oo their size

‘sl oY




e Now each cell E; in phase space is given a
statistical weight equal to the inverse of a
characteristic phase space volume
expansion rate (along the unstable
(expanding) manifold) A (x;) associated
with this cell.

e Consider thereto a phase point moving
during a discrete time + along a phase
Space trajectory from —7 /2 — 1 to /2,
which goes through the center x; of the cell
E;.
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® Considering a small phase space volume A around
the initial point at —7/2 — 1, all points in A will go
via phase space trajectories to corresponding points
in the phase space volume B around the fina] point

at +7/2.

® The larger the phase space volume expansion A, -(z;)
in the direction of the unstable manifold u is in time
T, i.e. the larger Lp/L 4, the more the phase space

trajectories will tend to avoid (bypass) the point @5

® The inverse of this ratio ~ Ly/Lp ~ AZ (z5) will
therefore be a measure of the “eagerness” or fre-
quency of the phase space trajectories to be near

zj, i.e. that the system will visit the cell E;.
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e This inverse expansion rate is a measure of
the stability of the trajectories near x;.

e Weighing the Markov partitions in phase
space this way, one obtains in a dynamical
fashion the probability to find the system
anywhere in phase.

e The average of a smooth function F(z),
where x is a point in phase space, is then
given by the following SRB measure:

i N () F ()

dx)F = 1
Jopoms(d=)P ) =l X5 A (i)

® LSRB = Mmicrocan. IN €Quilibrium.
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e Here [, is an integral over phase space and
the phase space weight A" (x;) is
In det |0S,(x).| i.e. the logarithm of the
determinant of the Jacobian matrix of the
map 8S-(x)., giving the expansion rate
over a time 7 along the unstable manifold,
where S, represents the dynamics of the
system over a time .
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Fluctuations Far From Equilibr. (The CFT)

e A Fluctuation theorem has been derived
based on the SRB distribution, for the heat
fluctuations of a reversible, very chaotic,
smooth (Anosov-like) many particle system
in a non-equilibrium stationary state.

¢ To understand this Conventional Fluctuation
Theorem (CFT), one considers a long
trajectory in the phase space of the system
in a non-equilibrium stationary state.
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1. One cuts this trajectory in many segments,
on each of which the system spends an
equal time 7.

2. One determines the heat produced Q@ or
absorbed —Q, on each segment and makes
a histogram of them.

3. This leads to a probability distribution
P(Q-) for the heat production or absorption
on a trajectory segment of duration .
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e This has led to the following (CFT):
Conventional Heat Fluctuation Theorem
for smooth potentials when 7 — oc:

%) = exp[BQ,] for Q; < p*Q;

e Here Q.. is the average heat produced in the
stationary state over all segments T,
for positive times t. .

e Extension of Second Law of
Thermodynamics.
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e In terms of a scaled Q,: p = Q-/Q~|, the
CFT reads then for smooth potentials and

T —F Od.

wr(p)
WT(_p

= exp[pro4] for p < p*

e Here p* is a limiting magnitude of p related
to the dynamics of the system and
o, = BQ./T, the average entropy
production rate (3 = 1/kgT).
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e Introducing a Fluctuation Function, F-(p),
the CFT can be written for = — oo as:

1 (D "
F-(p) In () = 9 & P

IBQT 71'—,-(—]7) _
i.e. F.(p) is a straight line with slope 1 as a
function of p.

e Gallovotti and Ruelle derived the Onsager'
and GK relations from the CFT, if the system
is near equilibrium, in agreement with IT.

e In this form the CFT has been confirmed
both by laboratory and computer
experiments.
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CFT
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Extended Heat Fluc. Theorem. (EFT)

e \ery recently the CFT has been extended,
from smooth Anosov-like systems, using the
SRB distribution, to systems of particles
interacting with singular potentials e.g. with
singularities as for the LJ potential at » = 0
or for the harmonic potential for x — oo.

e This has led formally to an Extended FT
(EFT) that goes beyond the CFT and holds
for fluctuations: p = Q,./Q, < p**.

e The EFT has been obtained explicitly for a
Brownian particle system. It is identical to
that of a parallel electric circuit, for which a
laboratory verification of the EFT has been
obtained.
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Brownian particle Fluctuations

58
X

*
x!

position x,

2. Energy Conservation:

WT:QT+AUT ®
or Q‘r — WT - AUT’

3. W,
Qr

AU,

— total work done on system in time 7

heat = friction energy dissipated by B
into water in time 7 (stochastic)

U,.; — U; = potential energy difference

of the particle in time 7 (deterministic)

2
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Brownian particle Fluctuations

e Based on overdamped (m=0) Langevin
equation:

0= —a&; —k(T—x}) + G
A . t .
Friction linear force fluctuations

b il s S ——
dissipative deterministic stochastic

e Harmonic potential: Uy = %£|Z; — &}|? ;
&; = v*t=position of the pot. min.

White noise -
G &= 0; GG =228(t — U

a

Relaxation time: 7. = =

e Dimensionless units:
a=Kk=0=1—->71=1

=\
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ANALOGY : BROWNIAN MOTION
AND
ELECTRIC CIRCUITS
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Parallel Circuit

5V, = Nyquist noise at time t (“stochastic”)
R = resistor

¢ = current through R attime ¢

C = capacitor (“mechanical”)

I = current source

““““ \




Analogy

a) Brownian motion — Langevin Equation with
m = 0 and harmonic potential:

0 = —ai"t = Kl(ift —’l_J'*t) —|—C:

b) Parallel circuit — Langevin equation with
L=0am V.= ¥

1
0= —Rgq: — E(Qt — It) — o0V,

c) Analogy:
Brown. B, | X | T & a | Kk
- 1
Par. Circuit | q: | 4 I | =0V, R C
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EFT: Extended (Heat) FT (from SPM)

Fluctuation function:

F(p) = gl l;}g)}

versus

result:

(p+ O(2) - (o<p<1

Fo(p) =P —5s(P—1)*+0() for{1<p<3

1
2+ [e2) o) (s<p<oo

* CFT for 7 — oo with p* = 1.
** EFT for 7 — oo with p** — oc.
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EFT: EXPERIMENTS

FOR
PARALLEL ELECTRIC CIRCUITS

N. Garnier and S. Ciliberto
PRE. 71, 060101 (2005)
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