LMS Symposium
Dynamical Systems and Statistical Mechanics

Durham, 3-13 July 2006

Exact recurrent structures in shear flow
turbulence

Predrag Cvitanovic’
John F. Gibson, Yueheng Lan,
Evangelos Siminos
Physics, Georgia Tech, Atlanta

Fabian Waleffe
Mathematics & Engineering Physics

U. Wisconsin, Madison

www.nongnu.org/channelflow Ruslan L. Davidchack

ChaosBook.org Mathematics, U. Leicester, UK



Turbulence: A walk through
a repertoire of unstable recurrent patterns’

AS A turbulent flow evolves, every so often we catch a glimpse of
a familiar pattern:

=) other swirls =)

For any finite spatial resolution, the system follows approximately
for a finite time a pattern belonging to a finite alphabet of
admissible patterns. The long term dynamics = a walk through the
space of such unstable patterns.



New exPerimentS:
Unstable Coherent Structures

Stereoscopic Particle Image \/elocime‘cry — 3%-d velocity field over
the entire Pipe1

Observed structures resemble numerically computed traveling waves

What lies beyond?

'Casimir W.H. van Doorne (PhD thesis, Delft 2004); Hof et al., Science (Sep 10, 2004)



Theory: 3—-d Navier-Stokes steady solutions

Unstable 3D steady state and travelmg wave Solutions of the
Navier—-Stokes equations

in plane Couette: first discovered by Nagataz
in plane shear flows: Exact Coherent Structures by waleffe?

(+ many more recent numerical results)

ZM. Nagata, "Three—dimensional finite-amplitude solutions in plane Couette flow: bifurcation from
infinity. , J. Fluid Mech. 217, 519 (1990)
35F. Waleffe, "3-D Coherent States in Plane Shear Flows", Phys. Rev. Lett. 81, 4140 (1998)



2001: 3-d Navier-Stokes periodic solution

Kawahara and Kida“

the first demonstration of existence of an unstable recurrent
pattern in a turbulent hydrodynamic flow.

full numerical dynamicals simulation, a 15,422-dimensional dis-
cretization of the 3—-d Plane Couette turbulence at Re = 400.

4G. Kawahara and S. Kida, “Periodic motion embedded in plane Couette turbulence: regeneration
cycle and burst”, J. Fluid Mech. 449, 291 (2001)



Found: an important unstable spatio—temporally periodic (?) solu-
tion. A 9 consecutive snapshots of a periodic video:

colored: hl‘gh vorticity regions - look like steady turbulent state
snapshots (but these are periodic)



Theory: 3—d Navier—-Stokes
relative Periodic solutions

Unstable 3D relative periodic solutions of the Navier—Stokes equa—
tions

in plane Couette: several Computed by Viswanath?

°D. Viswanath, “Recurrent motions within plane Couette turbulence”, arXiv.org:physics/0604062



Turbulence = geometry of the phase space

Three examples, in order of increasing complexity

1. Réssler “chaos” 3-d state space

2. Kuramoto-Sivashinsky “turbulence”

co—-d state space

3. Navier-Stokes “‘turbulence”

oco—-d state space



Z(1)

Rossler flow

X =-y=-z
y = X+ay
z=b+zx-0),

a=b=0.2, c=57.

A typical numerically inte-

grated long-time trajec-
tory




1-d “Navier—Stokes” equation

Navier—-Stokes —

_ 2
Up = (U )y = Uxx = Plyxexx

e inertial” term udyW; nonlinear
o “diffusive” terms 92u, d7u

® viscosity” v — suppresses fast spatial variations

\ \ ™ L,
only parameter: dimensionless lenath L =
Y P met Im l gt 277\/;
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Flame front flutter

u(x,t) \1

Q: 1-d turbulence -
flutter of a flame front?

_,_r"-/
-\-._\_-'.'—I - _-__F
X

Bunsen burner

’R.W. Bunsen (1811-1899), Doctorate U. G'o‘ttingen, age 19



Kuramoto—-Sivashinsky 45(\) wide




A small Kuramoto—-Sivashinsky system

(empirical: “smallest” cell that exhibits turbulence) 7, s

weakly turbulent regime:

or

~ 2.5(\) mean spatial wavelengths

Y. Lan and P. Cvitanovic’, in preparation
*R.L. Davichack, in preparation
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center “wobble”
waves

A long time series:
Jumps between
side “traveling



Navier—-Stokes equation

L (g—z+u-Vu> =—Vp+qV2u+f.

requires at least 15,000 dimensional discretization,



Plane Couette at Re = 400

a snapshot of a “typical“ turbulent ﬂowq.

Periodic [Ly = 27/1.14, L, = 27/2.5] box
in x (streamwise) and z (spanwise),

Chebyshev wall normal.

9John F. Gibson - www.nongnu.org/channelflow
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THE POINT OF THIS TALK



I THE POINT OF THIS TALK !l

UNLEARN:
3—-d VISUALIZATION

THINK:
co-d PHASE SPACE

instant in turbulent evolution:

a 3—-d video frame,
each pixel a 3-d velocity field

instant in turbulent evolution:
A Lmictue Point

theory of turbulence =
geometry ot the phase space

[E. Hopf 1948]



Z(1)

Rossler flow

X =-y=-z
y = X+ay
z=b+zx-0),

a=b=0.2, c=57.

A typical numerically inte-

grated long-time trajec-
tory




THINK IN PHASE SPACE!



Fourier representation

spatial Fourier basis:

+0OO

ux,t) =1 Y alt)e™.

k=-0c0

odd solutions subspace: u(x,t) = —u(-x,1t):

(®.@)
Ay = (k% - Uk4)ak -k Z AmMAk—rm -

m=—00

mnimal number of modes:

1-d Kuramoto-Sivashinsky system: 16 — 10°
2-d plane Couette: 104 - 10°



A “turbulent KS” trajectory

0.2

3.4
o
X

-0.4

084 o2 0 02 04

long=time numerical run of the dynamics Kuramoto-Sivashinsky

example (a two Fourier modes projection)



A “turbulent Plane Couette” trajectory Re = 400

Projected orbit
0.025

0.02

0.015

0.01F

0.005

o,
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-0.015|

-0.02

_0025 | | | | | | |
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

a transient starting close to the upper branch, ending in the laminar
state (30K modes 3-D Navier-Stokes DNS, a projection from Fourier x Fourier x Chebyshev

— unstable spiral plane of Waleffe's upper branch)



E quilibria / Traveling waves



Role of Rossler flow equilibria

St equilibrium  point
stable manifold
= basin boundary

right of the "+" trajectories escape

left of the "+ fall into chaotic attractor circlin9 the =" equilib—
Num point



Kuramoto-Sivashinsky equilibria

find ulx,t) = ulx + L,t) spatially periodic Kuramoto-Sivashinsky
equilibria using the variational method for ODE with “time” x

2
(U7 )y = Ugx = DUyxxx = 0.

number of equilibria increases rapidly with the system size L.

need to classify them accordin9 to their importance for asymptotic
dynamics



Important Kuramoto-Sivashinsky equilibria

The non-wondering set dynamics for L = 22 is gqualitatively con-
troled by unstable Z-wavelength and 3—wavelength equilibria, and

a dual pair of discrete symmetry related unstable 1—wavelength
relative equilibria/travelling waves.



20 20

-1 - i -1l 0 19

Z—wavelength equilibrium 3‘W5V€l€ﬂ9th equilibrium
on the interval [O,L]

a typical instantaneous “turbulent” Kuramoto-Sivashinsky profile
bears resemblance to one of these equilibria.



F. Wallefe Exact Coherent Structurem, plotted by John F. Gibson'',

midplans valocity
5.349

et r T TR T
e .r.l'fi‘.l'n,:;I|I|

-......r.".rhr.'l.".l'.l,..
..... ara .IJ'.I'!'.FJ'-JJ:J,‘
-r-.-.---"-".lII Tresranl

||J-|rl|' Irlrllfr.-lrlr.

'.,..la--ﬂd.l-l'l' .‘I.I'.-,._.”_;,
-% ..._----r;r -l'l"l'Jlrr.lﬂr
& P |r.|'r|a|.|”|.
.Tﬁ::,.nﬁi |F"I'"rlr|!ll
Iliill..ll'glrlrrll-nlul-l.
\ \ i
HPP@I’ bl’ahCh .'1H h""'ll---lr-

. .r"“'"' 1'l'l-.|||||l-..

Plane Couette at Re = 400

N N 3 -.-".'-"-llllllullpl'|l.l|||II|-.|,r
unstable equlllbrlum ,:uu‘-‘%hu----...,"
..--'-."-'l."-.l- I'l.".1l-|-.'-l-.||.
---.-.-"."."lhil ||"""“""""'-.l;|l |
TR .'-"l-.q--.a,
Periodic [L, = 27/1.14, L, = 27/2.5] box SRR "-.hm-,:grj’:
in x (streamwise) and z (spanwise), o :f:':':lu.l .:::‘_':ut i
Chebyshev wall normal. SR e,
0 2.4
=

Ovww.math.wisc.edu/~waleffe/ECS/RRC~data.html
1'www.nongnu.org/channelf low



ChaosBook.org




Stability ot Rossler flow equilibria

two equilibrium points
(x7,v,27) (x",y",2")
stable  manifold of
"+7 equilibrium  point
= attraction basin
boundary:

right of the "+ equilibrium trajectories escape,
left of the "+ spiral toward the "= equilibrium point

— Seem to wander chaotically for all times.



linearized stability exponents

N, A5 £ 195) = (-5.686, 0.0970 + 10.9951)
(AT, AL+ 193) = (0.1929, -4.596 x 107° +15.428)

The A; + 19, eigenvectors span a plane
this plane rotates with angular period T- = }277/«9§| = 6.313

a trajectory that starts near the "-" equilibrium point spirals away
per one rotation with multiplier A ygia) & expA;T-) = 1.84

each Poincare section return, contracted into the stable manifold
by amazing factor of Ay = exp(\jT-) = 10716 (1)



Important Kuramoto-Sivashinsky equation equilibria:
the first few stability exponents

S INERES INEBEL S Az + 193
C; 0.04422 +10.26160 -0.255 +10.431 -0.347 +10.463
C, 0.33053% 0.097 +10.243 -0.101 +10.233
R 0.01135 +10.79651 -0.215 +10.549 -0.358 +10.262
R, 0.33223 ~0.001 +10.703 -0.281 +10.399
T 0.25480 -0.07 £10.645 -0.264

sPiralin9 out in a plane, all other directions contracting



F. Wallefe Exact Coherent StructureQ, plotted by John F. Gibson'

Plane Couette at Re = 400

“upper branch”
unstable equilibrium

Periodic [L, = 27m/1.14, L, = 2m/2.5] box
in x (streamwise) and z (spanwise),

Chebyshev wall normal.

2\ vww.math.wisc.edu/~waleffe/ECS/RRC~data.html
'3www.nongnu.org/channelf low
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Unstable manitfold, upper-branch equilibrium

Black: from “upper branch”
to lammnar fixed point

Blue: trajectories started
near unstable equilibrium —
Z2—d unstable manifold over
large region of phase space

R = 400 plane Coutte phase
space, Projectior\ 20 x 10° = 2
dimensions

[J.F. Gibson]



E quivaraint trace formulae



Dynamical systems

state space /U

representative point x(t) € M : a physical system at instant in
time

dynamics: Y xo) = representative point time t later

deterministic dynamics: evolution rule f maps a point into exactly
one point at time t.

dynamical system: the pair (M, f)

M = Rd, d numbers determine next state.



Flows

For infinitesimal times, flows can be defined by differential equa-
tions — a generalized vector field

vix) = x(t) .

Examples:
Newton’s laws for a mechanical system

general flows, mechanical or not, defined by a time-independent
vector field v(x)



Trajectories

()

"

trajectory: evolution rule f¥ traces out curve x(t) = Ft(xo), through
the point xo = x(0):

t

x(t) = £'(xg) = X0 +/ dr vix(T)), x(0) = x¢ .
@)



Types of trajectories?

stationary: f¥(x) = x for all t
periodic: Y (x) = £ TR(x) for a given minimum period Ty
aperiodic: fYx) # f¥(x)  for allt £t/ .

A periodic orbit corresponds to a trajectory that returns exactly
to the initial point in a finite time.

Periodic orbits: a very small subset of the phase space, in the
same sense that rational numbers are a set of zero measure on
the unit interval.

for a generic dynamical system most motions are aperiodic



Evolution operators

rewrite as
<e/3 ’A\t = m/ dx/ dy 8(y = F1(x)) R
5(y - £¥(x)) is the Dirac delta function.

evolution operator
.
Ly, x) = 8(y - £1(x) N
replaces individual trajectories f'(x) by evolution of a density of
the totality of initial conditions:

probe the entire phase space with finite time pieces of trajectories
originating from every point in M.

leading eigenvalue
it(y, x) = e*0 = expectation values



Trace formula for a deterministic flow

The classical trace formula for flows:
oo o' I’(BIA\ -sT )

2 2 [ (1og)|




Hyperbolicity assumption

stabilities of all cycles exponentially bounded
el 2 teTp any p, any expanding [Asel > 1
Ap el < e e Tp any p, any contracting Ayl <1,

Xe, Ac 7 O are strictly positive bounds on the expanding, contract-
ing cycle Lyapunov exponents.

for long times, t = rTy — 00, only the product of expanding
eigenvalues matters:

det (1 —~ J;;) ‘ — \/\P\r



LLocal trace

Trace over prime cycle p of period n,, neighborhood MP

N
tr Pi”P = / dx cS(x - FnP(x)) = -
MP det (]. = JP) ’

factor eigenvalues of Jacobian matrix ‘]P into exPanding and
contracting sets {e,c}:

—1 1 1 1
CI t (]. - J ) ’ = — )
© P A U1 ~ 1/ Mg 1= Ao

c

Assume that no marginal eigenvalue

Ay = ]_[e/\P,e = product of expanding eigenvalues.



Relative periodic orbits: how to find them



ask Ruslan Davidchack
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insky: Hopf's vision
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Future looks bright



Recurrent patterns vs. models of turbulence

What new does recurrent patterns program offer?

Normal form models of applied mathematics - such as the Lorenz
model — capture qualitatively some bifurcations and chaos similar
to those observed in hydrodynamics

Periodic orbit theory Provides aAccurate quantitative Predic:tions
for given flow, given boundary conditions, given “Reynolcls" and
other parameters.



Conclusion: Hof is hope renewed for
Hopf's Last Hope for a Theory of Turbulence

Hopf's vision: repertoire of recurrent spatio-temporal patterns
explored by turbulent dynamics

detailed dynamics horrible, but much less so than feared:
pieced together from 1-d return maps (/)

“To do’”’ list:

Q: plane Couette-Taylor shear flow?
Waleffe; Kawahara & Kida: it can be done!



In theory there is no difference between theory and practice.
In practice there is. Yogi Berra

not Snepscheut! aPPOIOQIeS to Lyonia,
thanks to Mason Porter.




