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Do fluctuation relations need
to be modified in the far from

equilibrium regime?
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Fluctuation Relations
• In general describes the ratio of the probability of observing

trajectory segments with the values of a phase function with
equal magnitude, but opposite sign:

• In some special cases:

• Notation:

 

Evans & Searles, Ad. Phys. 51, 1529-1585 (2002)

p(Φt = A)
p(Φt = −A)

= eAt

p(Φt = A)
p(Φt = −A)

= ...

p(Φt = A) p(A − dA < Φt < A + dA)

lim
t→∞

1
t
ln p(Φt = A)
p(Φt = −A)

= ...

lim
t→∞

1
t
ln p(Φt = A)
p(Φt = −A)

= A

Φt =
1
t

Φ(Γ(s))ds0
t
∫
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Fluctuation Relations
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Types of Fluctuation Relation
• Focus here on nonequilibrium steady state systems,

or systems approaching a steady state from a known
state

• How the segments are sampled:
– Transient

– Ensemble of Steady States

– Segments from a single steady state trajectory

• The argument of the relation

• The way in which they are derived
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Sampling

known distribution
(equilibrium)

steady state

Transient relations Steady state relations

True at all t True at long t

known distribution
(equilibrium)

steady state
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Steady State Fluctuation
Relations

• Dissipation function fluctuation relation:

• Phase space expansion fluctuation relation

Dissipation function

lim
t→∞

1
t
ln p(Ωt = A)
p(Ωt = −A)

= A p(Ωt = A) ≠ 0;p(Ωt = −A) ≠ 0

Phase space expansion

lim
t→∞

1
t
ln p(−Λt = A)
p(−Λt = −A)

= A −A* < A < A*
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Differences

Applies for a restricted range of A:
but at least  -〈 A 〉 < A < 〈 A 〉

Applies for all A provided p(A)≠0 and
p(-A)≠0

Argument is the phase space
expansion rate

Argument is the dissipation function:
which is proportional to the
dissipative flux for systems that
satisfy AIΓ.

For systems that are Anosov or
satisfy the chaotic hypothesis

(Gallavotti Cohen)

Derived from the transient fluctuation
relation which is obtained from the
Liouville measure (also Lyapunov
measure) (Evans Searles)

lim
t→∞

1
t
ln p(Ωt = A)
p(Ωt = −A)

= A lim
t→∞

1
t
ln p(−Λt = A)
p(−Λt = −A)

= A
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Similarities

When dynamics is isoenergetic:                and the relations are identical (but
might apply over different domains, and aren’t derived in the same way)

Require chaos; steady state exists

Λt = −Ωt

lim
t→∞

1
t
ln p(Ωt = A)
p(Ωt = −A)

= A lim
t→∞

1
t
ln p(−Λt = A)
p(−Λt = −A)

= A



11

Differences

Breaks down at high fields, when
the equality of number of ±
Lyapunov exponents is broken
(dimension of the attractive set
smaller than that of the full phase
space)

Applies at all fields (provided only
one steady state exists)

Applies for a restricted range of A:
but at least -〈 A 〉 < A < 〈 A 〉

Applies for all A provided p(A)≠0 and
p(-A)≠0

Argument is the phase space
expansion rate

Argument is the dissipation function:
which is proportional to the
dissipative flux for systems that
satisfy AIΓ.

For systems that are Anosov or
satisfy the chaotic hypothesis

(Gallavotti Cohen)

Derived from the transient fluctuation
relation which is obtained from the
Liouville measure (also Lyapunov
measure)

lim
t→∞

1
t
ln p(Ωt = A)
p(Ωt = −A)

= A lim
t→∞

1
t
ln p(−Λt = A)
p(−Λt = −A)

= A
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• At high fields it has been proposed that the FR givesa

X is ~ the ratio of number of ± pairs to the

number of pairs of Lyapunov exponents

• Furthermore, it has been argued that from this relationship the
dissipative flux relation can be obtainedb (not just for
isoenergetic systems) and therefore

a) F. Bonetto, G. Gallavotti, and P. L. Garrido, Physica D 105, 226 (1997).
b) A. Giuliani, F. Zamponi, and G. Gallavotti, J. Stat. Phys. 119, 909 (2005).

lim
t→∞

1
t
ln p(Ωt = A)
p(Ωt = −A)

= XA

lim
t→∞

1
t
ln p(−Λt = A)
p(−Λt = −A)

= XA

High Field Fluctuation
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Motivation
• For some range of A, the two different approaches

lead to two different relationships for the same
system (unless A*=0).  Both cannot apply

• Can we test which one applies to a simple system
that represent the nonequilibrium steady state
dynamics that we are interested in?

S. R. Williams, D. J. Searles and D. J. Evans, J. Chem. Phys., 124, 194102 (2006) 

lim
t→∞

1
t
ln p(Ωt = A)
p(Ωt = −A)

= XAlim
t→∞

1
t
ln p(Ωt = A)
p(Ωt = −A)

= A
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System to study
• Need fields high enough that the numbers of +ve and

-ve Lyapunov exponents do not match
• Need to still be able to observe trajectory segments

with ±A
• Need systems with few degrees of freedom so that X

is significant.
• Need to select a system for which both expressions

would be expected to apply, according to theory or
systems studied previously

• Selected a simple Nosé-Hoover thermostatted
dynamics - model of heat conduction
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Fluctuation Relations
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System to study
• Equations of motion:

 

q = p
p = −q −α1p −α 3p

3 −α5 p
5

α1 =
(p2 − T (q))

τ1
2

α 3 =
(p4 − 3p2T (q))

τ 3
2

α5 =
(p6 − 3p4T (q))

τ 5
2

T (q) = 1+ ε tanh(q)
Drives
system
out of eq.
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Equilibrium distribution
function

   

f q, p,α
1
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3
,α

5( )  τ
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2π( )5/ 2
exp −H q, p,α
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3
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5( )( )

  
H = H
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1
2α

1
2 + τ

3
2α

3
2 + τ
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Dissipation function and
Phase space expansion rate

   
Ω q, p,α

1
,α

3
,α

5( ) = H − Λ = 1− T q( )( ) α1
+ 3α

3
p2 + 5α

5
p4( )

   

Λ p,α
1
,α

3
,α

5( ) = ∂ q
∂q

+ ∂p
∂p

+
∂ α

1

∂α
1

+
∂ α

3

∂α
3

+
∂ α

5

∂α
5

= −α
1
− 3α

3
p2 − 5α

5
p4

= −Ω − T (q)(α
1
+ 3α

3
p2 + 5α

5
p4 )

   
H = 0 ⇒ Λ = − Ω



19

Lyapunov exponents
ε

 λ1  λ2  λ3  λ4
Error in exponents

 (~2 SE)

0 0.0173 0.0025 -0.0025 -0.0173 0.0001

0.1 0.0195 0.0028 -0.0032 -0.0199 0.0001

0.2 0.0190 0.0018 -0.0055 -0.0226 0.0001

0.3 0.0131 0.0010 -0.0089 -0.0288 0.0001

0.4 0.0080 0.0008 -0.0082 -0.0320 0.0001

0.43 0.0063 -0.0009 -0.0088 -0.0222 0.0001

0.45 0.00130 -0.00400 -0.01330 -0.02310 0.00003

X=1/2
X=1/2

X=1
   .
   .
   .
   .
X=1
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Phase space projections
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Phase space projections
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Steady State FR ε = 0.1

lim
t→∞

1
t
ln p(Ωt = A)
p(Ωt = −A)

= A lim
t→∞

1
t
lnp(Ωt < 0)
p(Ωt > 0)

− ln e−Ωtt
Ωt>0

⎛
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lim
t→∞

1
t
ln p(Ωt = A)
p(Ωt = −A)

= XA

Steady State FR ε = 0.43

No X is required
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Steady State FR ε = 0.1
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Steady State FR ε = 0.01
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D. J. Evans, D. J. Searles and L. Rondoni, , Phys. Rev. E, 71, 056120/1-13 (2005)
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Steady State FR ε = 0.43

Numerical observations : X ~ 1
convergence faster ε→ large

lim
t→∞

1
t
ln eXΛ tt
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Steady State FR - Conclusions

•  Ω-FR:   No X required. As expected from theory, at fields that
as so high that the number of +ve and -ve exponents do not
match, the FR is robust - no factor X has to introduced.

• Since  Ω-FR and Λ-FR become equivalent in isoenergetic
systems, expect that X=1 for Λ-FR (at least in that case) too.

• For this system, behaviour of Λ-FR is inconclusive: at the
timescales considered, it is not conclusively obeyed at low field
(X is expected to be 1), and X~1 at high field. This might be
because

– Timescale much too short
– Chaotic hypothesis does not apply to this system (can we test it for

a system that is Anosov at low fields?)
– Conjecture leading to inclusion of a factor, X, needs

reconsideration



28

Acknowledgements

• Australian Research Council

• Australian Partnership for Advanced
Computing

• Workshop organisers


