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Painlevé Equations
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where α, β, γ and δ are arbitrary constants.
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History of the Painlevé Equations
• Derived by Painlevé, Gambier and colleagues in the late 19th/early 20th centuries

• Studied in Minsk, Belarus by Erugin, Lukashevich, Gromak et al. since 1950’s; much
of their work is published in the journal Diff. Eqns., the translation of Diff. Urav.

• Barouch, McCoy, Tracy & Wu [1973, 1976] showed that the correlation function of
the two-dimensional Ising model is expressible in terms of solutions of PIII.

• Ablowitz & Segur [1977] demonstrated a close connection between completely in-
tegrable PDEs solvable by inverse scattering, the soliton equations, such as the
Korteweg-de Vries and nonlinear Schrödinger equations, and the Painlevé equations.

• Flaschka & Newell [1980] introduced the isomonodromy deformation method (in-
verse scattering for ODEs), which expresses the Painlevé equation as the compati-
bility condition of two linear systems of equations and are studied using Riemann-
Hilbert methods. Subsequent developments by Deift, Fokas, Its, Zhou, . . .

• Algebraic and geometric studies of the Painlevé equations by Okamoto in 1980’s.
Subsequent developments by Noumi, Umemura, Yamada, . . .

• The Painlevé equations are a chapter in the “Digital Library of Mathematical Func-
tions”, which is a rewrite/update of Abramowitz & Stegun’s “Handbook of Mathe-
matical Functions” due to appear — see http://dlmf.nist.gov.
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Properties of the Painlevé Equations
• PII–PVI have Bäcklund transformations which map solutions of a given Painlevé

equation to solutions of the same Painlevé equation, but with different values of the
parameters.
• PII–PVI have rational and algebraic solutions for certain values of the parameters.
• PII–PVI have special function solutions expressed in terms of the classical special

functions [Airy Ai(z), Bi(z), Bessel Jν(z), Yν(z), parabolic cylinder Dν(z), Whit-
taker Mκ,µ(z), Wκ,µ(z) and hypergeometric 2F1(a, b; c; z)], for certain values of the
parameters.
• These rational, algebraic and special function solutions of PII–PVI can often be writ-

ten in determinantal form.
• PI–PVI can be written as a (non-autonomous) Hamiltonian system.
• PII–PVI have associated Affine Weyl groups which act on the parameter space.
• PI–PVI possess Lax pairs (isomonodromy problems).
• PI–PVI can be written in bilinear form.
• PI–PVI form a coalescence cascade.

PVI −→ PV −→ PIVy y
PIII −→ PII −→ PI
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Why study Painlevé-type equations?
• They are very attractive! The solutions of the Painlevé equations, called the Painlevé

transcendents, are interesting mathematical functions.

• The general solutions of the Painlevé equations are transcendental, i.e. irreducible
in the sense that they cannot be expressed in terms of previously known functions,
such as rational functions or the classical special functions.

• The Painlevé equations may be viewed as nonlinear special functions.

• The Painlevé property is deeply connected to the notion of “integrability” of differ-
ential equations, which is not well understood.

• Progress on problems involving Painlevé-type equations frequently has many bene-
fits to the theory of differential equations.

• They have numerous significant mathematical and physical applications.
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Combinatorics and PII
Let SN be the group of permutations π of the numbers 1, 2, . . . , N . For 1 ≤ j1 < j2 <

. . . < jk ≤ N , we say that π(j1),π(j2), . . . ,π(jk) is an increasing subsequence of π
of length k if

π(j1) < π(j2) < · · · < π(jk)

Let `N(π) be the length of the longest subsequence of π.
For example, if N = 5 and π is the permutation

π(1, 2, 3, 4, 5) = (5, 1, 3, 2, 4)

then 134 and 124 are both longest increasing subsequences of π and so `5(π) = 3.
Define

qN(m) ≡ Prob(`N(π) ≤ m)

then determine
lim
N→∞

qN(m)

which can be expressed in terms of solutions of the special case of PII with α = 0

d2w

dz2
= 2w3 + zw PII
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Define

χN(π) =
`N(π)− 2

√
N

N 1/6

then Baik, Deift & Johansson [1999] showed that

lim
N→∞

Prob(χN(π) ≤ t) = exp

{
−

∫ ∞

t

(z − t)w2
HM(z) dz

}
where w(z) satisfies the special case of PII with α = 0

w′′HM = 2w3
HM + zwHM (1)

together with the boundary conditions
wHM(z) ∼ Ai(z), as z →∞
wHM(z) ∼

(
−1

2z
)1/2

, as z → −∞
(2)

with Ai(z) the Airy function satisfying

Ai′′(z)− z Ai(z) = 0

and boundary conditions

Ai(z) ∼ 1
2π
−1/2z−1/4 exp

(
−2

3z
3/2

)
, as z →∞

Ai(z) = π−1/2|z|−1/4 sin
(

2
3|z|

3/2 + 1
4π

)
+ o(|z|−1/4), as z → −∞

Hastings & McLeod [1980] proved that there is a unique solution of (1) satisfying the
boundary conditions (2).
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Theorem (Tracy & Widom [1994])
In Random Matrix Theory, the limiting distribution for the normalized largest eigen-
value in the Gaussian Unitary Ensemble of N × N Hermitian matrices in the edge
scaling limit, is

lim
N→∞

Prob
((
λmax − 2

√
N

)√
2 N 1/6 ≤ t

)
= F2(t)

where

F2(t) = exp

{
−

∫ ∞

t

(z − t)w2
HM(z) dz

}
Theorem (Baik, Deift & Johansson [1999])
Let χ be a random variable whose distribution function is the distribution function F2(t).
Then, as N →∞,

χN :=
`N(π)− 2

√
N

N 1/6
→ χ

in distribution, i.e.
lim
N→∞

Prob (χN ≤ t) = F2(t)

• The function F2(t) is known as the Tracy-Widom distribution.

• The solution wHM(z) is known as the Hastings-McLeod solution.
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The “classic” boundary value problem for PII with α = 0

w′′HM = 2w3
HM + zwHM (1)

with

wHM(z) ∼

{
Ai(z), as z →∞(
−1

2z
)1/2

, as z → −∞
the “Hastings-McLeod solution”, arises in many applications:
• Spherical electric probe in a continuum plasma

• Görtler vortices in boundary layers

• Nonlinear optics

• Random matrix theory: Orthogonal, Unitary and Sympletic Emsembles

• Length of longest increasing subsequences, patience sorting and random walks

• Buses in Cuernavaca (Mexico), Aztec diamond tiling and airline boarding

• Universality of the edge scaling for nongaussian Wigner matrices

• Shape fluctuations in polynuclear growth models

• Distribution of eigenvalues for covariance matrices and Wishart distributions

• Distribution of zeros of the Riemann zeta function

• Bose-Einstein condensation, Superheating fields of superconductors
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Elliptic Asymptotics of PII
(Boutroux [1913])

Making the transformation

w(z) = z1/2u(ζ), ζ = 2
3z

3/2

in PII

w′′ = 2w3 + zw + α

gives
d2u

dζ2
= 2u3 + u− 1

ζ

du

dζ
+

u

9ζ2
+

2α

3ζ

Thus, in three sectors of angle 2
3π, the generic PII function has the asymptotics

w(z) ∼ z1/2u(ζ), ζ = 2
3z

3/2

where u(ζ) satisfies the Jacobian elliptic equation(
du

dζ

)2

= u4 + u2 +K

with K an arbitrary constant. The parameters in the elliptic function u(ζ) change across
the Stokes lines at 0 and ±2

3π from the positive real axis of the complex z-plane.
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Asymptotics of General Painlevé II
There is a family of solutions of PII

w′′ = 2w3 + zw + α

with the asymptotic behaviour

w(z) ∼ −α
z

∞∑
n=0

bn
z3n

, as |z| → ∞ (1)

where b0 = 1 and

bn+1 = (3n + 2)(3n + 1)bn − 2α2
n∑
k=0

k∑
m=0

bmbk−mbn−k

The first few coefficients are
b1 = −2(α2 − 1), b3 = −8(α2 − 1)(12α4 − 117α2 + 280)
b2 = 4(α2 − 1)(3α2 − 10), b4 = 16(α2 − 1)(55α6 − 1091α4 + 7336α2 − 15400)

The series (1) is divergent and the arbitrary constants arise from exponentially small
terms which are “beyond all orders”. As |z| → ∞, in sectors

w(z) = w1(z) + kz−1/4 exp
(
−2

3z
3/2

) {
1 +O

(
|z|−3/4

)}
+O

(
z−7/4 exp

(
−4

3z
3/2

))
where w1(z) ∼ −α/z and k is an arbitrary constant (Its & Kapaev [2003]).
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There is a second family of solutions with the asymptotic behaviour

w(z) ∼ ±i z1/2

√
2

∞∑
n=0

cn
z3n/2

, as |z| → ∞ (2)

with c0 = 1, c1 = ∓1
2

√
2 iα and

cn+2 =
1− 9n2

8
cn −

1

2

{
n+1∑
k=1

ckcn+2−k +

n+1∑
k=1

k∑
m=0

cmck−mcn+2−k

}
The first few coefficients are

c2 =
6α2 + 1

8
,

c4 = −420α4 + 708α2 + 73

128
,

c3 = ±
√

2 i
α(16α2 + 11)

16

c5 = ∓
√

2 i
α(768α4 + 2504α2 + 1021)

128
The series (2) is also divergent and the arbitrary constants arise from exponentially small
terms which are “beyond all orders”. As |z| → ∞, in sectors

w(z) = w2(z) + k|z|−(6α+1)/4 exp
(
−2

3

√
2 |z|3/2

) {
1 +O(|z|−1/4)

}
where w2(z) ∼ ±

i z1/2

√
2

and k is an arbitrary constant (Kapaev [2004]).
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Asymptotics of PII

w′′k = 2w3
k + zwk

with boundary condition

wk(z) ∼ kAi(z) as z →∞
• If |k| < 1, then as z → −∞

wk(z) = d|z|−1/4 sin
(

2
3|z|

3/2 − 3
4d

2 ln |z| − θ0

)
+ o(|z|−1/4)

• If |k| = 1, then as z → −∞

wk(z) ∼ sgn(k)
(
−1

2z
)1/2

• If |k| > 1, then wk(z) blows up at a finite z0

wk(z) ∼ sgn(k)(z − z0)
−1 as z ↓ z0

• Connection formulae
d2(k) = −π−1 ln(1− k2)

θ0(k) = 3
2d

2 ln 2 + arg
{
Γ

(
1− 1

2id
2
)}
− 1

4π

(Ablowitz & Segur [1977, 1981], Hastings & McLeod [1980], Suleimanov [1987], Bas-
som, PAC, Law & McLeod [1998], PAC & McLeod [1988], Deift & Zhou [1993, 1995])
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Second Painlevé Equation

w′′ = 2w3 + zw + α PII

PII arises as a reduction of the mKdV equation

ut − 6u2ux + uxxx = 0 (1)

through the scaling reduction

u(x, t) = (3t)−1/3w(z), z = x/(3t)1/3

The mKdV equation (1) is solvable by inverse scattering through the integral equation

K(x, y; t) = F (x + y; t) + 1
4

∫ ∞

x

∫ ∞

x

K(x, z; t)F (z + s; t)F (z + y; t) dz ds

where F(x, t) is expressed in terms of the initial data and satisfies the linear equation

Ft + Fxxx = 0

and u(x, t) is obtained through

u(x, t) = K(x, x; t)
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Theorem (Ablowitz & Segur [1977])
Consider the integral equation

K(z, ξ) = kAi

(
z + ξ

2

)
+
k2

4

∫ ∞

z

∫ ∞

z

K(z, s) Ai

(
s + t

2

)
Ai

(
t + ξ

2

)
ds dt (1)

Then w(z) = K(z, z) satisfies
w′′ = 2w3 + zw

which is the special case of PII with α = 0, and the boundary condition

w(z) ∼ kAi(z), as z →∞

The integral equation (1) is derived by making the scaling reduction

K(x, y; t) = (3t)1/3K(z, ξ),

F(x + y; t) = (3t)1/3F (z + ξ),

z = x/(3t)1/3

ξ = y/(3t)1/3

in the integral equation

K(x, y; t) = F (x + y; t) + 1
4

∫ ∞

x

∫ ∞

x

K(x, z; t)F (z + s; t)F (z + y; t) dz ds

for solving the mKdV equation by inverse scattering.
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Isomonodromy Deformation Method for PII
(Flaschka & Newell [1980])

The second Painlevé equation

w′′ = 2w3 + zw + α PII

is the compatibility condition of the linear system

∂Ψ

∂z
=

(
−iλ w
w iλ

)
Ψ,

∂Ψ

∂λ
=

(
−i(4λ2 + 2w2 + z) 4λw + 2iw′ + α/λ
4λw − 2iw′ + α/λ i(4λ2 + 2w2 + z)

)
Ψ

• The connection formulae

d2(k) = −π−1 ln(1− k2), θ0(k) = 3
2d

2 ln 2 + arg
{
Γ

(
1− 1

2id
2
)}
− 1

4π

for solutions of PII with α = 0 were derived heuristically using the isomonodromy
deformation method by Suleimanov [1987] and Its & Kapaev [1988]. Subsequently
proved rigorously by Deift & Zhou [1993, 1995] using a nonlinear version of the
classical steepest descent method for oscillatory Riemann-Hilbert problems, which
is rather complex.

• Bassom, PAC, Law & McLeod [1998] developed a uniform approximation method.
This procedure, which is rigorous, removes the need to match solutions and can, in
principle, lead to simpler solutions of connection problems.
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The Lax pair for the modified KdV equation

ut − 6u2ux + uxxx = 0

is

ψx =

(
−ik u
u ik

)
ψ, ψt =

(
A B
C −A

)
ψ

with
A = −4ik3 − 2iku2

B = 4k2u + 2ikux − uxx + 2u3

C = 4k2u− 2ikux − uxx + 2u3

Making the reduction

u(x, t) = (3t)−1/3w(z), z = x/(3t)1/3

ψ(x, t; k) = Ψ(z;λ), λ = k(3t)1/3

yields the monodromy pair for PII

∂Ψ

∂z
=

(
−iλ w
w iλ

)
Ψ,

∂Ψ

∂λ
=

(
−i(4λ2 + 2w2 + z) 4λw + 2iw′ + α/λ
4λw − 2iw′ + α/λ i(4λ2 + 2w2 + z)

)
Ψ
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∂Ψ

∂z
=

(
−iλ w
w iλ

)
Ψ ≡ A(z, λ)Ψ

∂Ψ

∂λ
=

(
−i(4λ2 + 2w2 + z) 4λw + 2iw′ + α/λ
4λw − 2iw′ + α/λ i(4λ2 + 2w2 + z)

)
Ψ ≡ B(z, λ)Ψ

Note that
∂2Ψ

∂z∂λ
=
∂2Ψ

∂λ∂z
⇐⇒ ∂A

∂λ
− ∂B

∂z
+ AB− BA = 0

if and only if w(z) satisfies PII

w′′ = 2w3 + zw + α

λ = 0 — regular singular point if α 6= 0

λ =∞ — irregular singular point
Direct Problem
• Obtain the monodromy data given w(z0) and w′(z0).

Inverse Problem
• Reconstruct w(z0) from the monodromy data.
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Fokas & Ablowitz [1983], Fokas & Zhou [1992] show that the Riemann-Hilbert prob-
lem associated with PII consists of finding the piecewise holomorphic 2×2 matrix valued
function Ψ(λ), the fundamental solution, such that

•Ψ(λ) is holomorphic for λ ∈ C \
⋃6
k=1 Γk, where Γk are the rays

Γk = {λ ∈ C : arg λ = 1
6(2k − 1)π}, k = 1, . . . , 6

oriented from zero to infinity, and as λ→∞

Ψ(λ) = [I +O(λ−1)] exp
{
−i(4

3λ
3 + zλ)σ3

}
, σ3 =

(
1 0
0 −1

)
• On the rays Γk the jump conditions hold

Ψk+1(λ) = Ψk(λ)Sk, λ ∈ Γk

where the Stokes multipliers Sk are

S2k−1 =

(
1 0

s2k−1 1

)
, S2k =

(
1 s2k

0 1

)
and the the monodromy data sk do not depend either on z or on λ and satisfy the
constraints

sk+3 = sk, k = 1, 2, 3

s1 + s2 + s3 + s1s2s3 = 2i sin(πα)
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Theorem (Flaschka & Newell [1980])
The monodromy data for the system

∂Ψ

∂λ
=

(
−i(4λ2 + 2w2 + z) 4λw + 2iw′ + α/λ
4λw − 2iw′ + α/λ i(4λ2 + 2w2 + z)

)
Ψ

do not depend upon z if and only if w(z) satisfies PII

w′′ = 2w3 + zw + α

For the special case of PII with α = 0

w′′ = 2w3 + zw

then
s2 =

s∗1 − s1

1− s1s∗1
, s3 = −s∗1

and so the monodromy data is characterized by the complex parameter s1.

Isomonodromy
• Each Painlevé equation has associated with it a linear equation — involving as pa-

rameters w(z), w′(z) and z — whose monodromy data is independent of z if w(z)
satisfies the Painlevé equation.
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w(z) ∼ kAi(z), z →∞

w(z) = d|z|−1/4 sin
(

2
3|z|

3/2 − 3
4d

2 ln |z| − θ0

)
+ o(|z|−1/4), z → −∞

Objective
• Express the parameters k, d and θ0 in terms of the monodromy data s1. Since s1 is

independent of z then we obtain the requisite connection formulae

Asymptotics as z →∞
• Since w and w′ decay exponentially to zero then the computation of the monodromy

data is reduced to the evaluation of an integral using the WKB method.

Asymptotics as z → −∞
• Replace w and w′ in the monodromy problem by the leading terms in their asymp-

totic expansions and this obtain a singular perturbation systems in a small parameter.
Applying a nonlinear version of the classical steepest descent method for oscillatory
Riemann-Hilbert problems, yields the connection formulae

d2(k) = −π−1 ln(1− k2)

θ0(k) = 3
2d

2 ln 2 + arg
{
Γ

(
1− 1

2id
2
)}
− 1

4π
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Classical Solutions of PII

d2w

dz2
= 2w3 + zw + α PII

Theorem
1. PII has rational solutions if and only if

α = n

with n ∈ Z.

2. PII has solutions expressible in terms of the Riccati equation

εw′ = w2 + 1
2z

if and only if
α = n + 1

2

with n ∈ Z. The Riccati equation has solution

w(z) = −εϕ′(z)/ϕ(z)

where
ϕ(z) = C1 Ai(ζ) + C2 Bi(ζ), ζ = −2−1/2z

with Ai(ζ) and Bi(ζ) Airy functions.
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Bäcklund Transformations
Definition
• A Bäcklund transformation maps solutions of a given Painlevé equation to solu-

tions of the same Painlevé equation, though with different values of the parameters.

Example (Gambier [1910])
Suppose that w(z;α) is a solution of PII

d2w

dz2
= 2w3 + zw + α

then
S w(z;−α) = −w(z;α)

T± w(z;α± 1) = −w(z;α)− 2α± 1

2w2(z;α)± 2w′(z;α) + z

are also solutions of PII, provided that

2w2(z;α)± 2w′(z;α) + z 6= 0

. . .
T+−→ w(z;α− 1)

T+−→ w(z;α)
T+−→ w(z;α + 1)

T+−→ . . .

. . .
T−←− w(z;α− 1)

T−←− w(z;α)
T−←− w(z;α + 1)

T−←− . . .
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Associated Difference Equations
Example (Fokas, Grammaticos & Ramani [1993])

Suppose that w(z;α) is a solution of PII

w′′ = 2w3 + zw + α

Then

w(z;α + 1) = −w(z;α)− 2α + 1

2w2(z;α) + 2w′(z;α) + z

w(z;α− 1) = −w(z;α)− 2α− 1

2w2(z;α)− 2w′(z;α) + z

are also solutions of PII. Eliminating w′(z;α) yields
2α + 1

w(z;α + 1) + w(z;α)
+

2α− 1

w(z;α) + w(z;α− 1)
+ 4w2(z;α) + 2z = 0

Hence setting
wα±1 = w(z;α± 1), wα = w(z;α)

gives
2α + 1

wα+1 + wα
+

2α− 1

wα + wα−1
+ 4w2

α + 2z = 0

which is an alternative form of dPI
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Therefore hierarchies of solutions of PII satisfy both:

• a differential equation
d2w

dz2
= 2w3 + zw + α PII

• a difference equation
2α + 1

wα+1 + wα
+

2α− 1

wα + wα−1
+ 4w2

α + 2z = 0 a-dPI

Remarks
• This is analogous to the situation for classical special functions such as Bessel func-

tions and Hermite functions which satisfy both a differential equation and a differ-
ence equation.

• For PII, the independent variable z varies and the parameter α is fixed, whilst for
a-dPI, z is a fixed parameter and α varies.

• The asymptotics of wα as α→∞ can be studied through the asymptotics of w(z;α)
as α→∞.
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Rational Solutions of PII — Vorob’ev–Yablonskii Polynomials
Theorem (Yablonskii & Vorob’ev [1965])

Suppose that Qn(z) satisfies the recursion relation

Qn+1Qn−1 = zQ2
n − 4

[
QnQ

′′
n − (Q′n)

2
]

with Q0(z) = 1 and Q1(z) = z. Then the rational function

w(z;n) =
d

dz
ln

{
Qn−1(z)

Qn(z)

}
=
Q′n−1(z)

Qn−1(z)
− Q′n(z)

Qn(z)

satisfies PII

w′′ = 2w3 + zw + α

with α = n ∈ Z+. Further w(z; 0) = 0 and w(z;−n) = −w(z;n).

The Yablonskii–Vorob’ev polynomials are monic polynomials of degree 1
2n(n + 1)

Q2(z) = z3 + 4

Q3(z) = z6 + 20z3 − 80

Q4(z) = z10 + 60z7 + 11200z

Q5(z) = z15 + 140z12 + 2800z9 + 78400z6 − 313600z3 − 6272000

Q6(z) = z21 + 280z18 + 18480z15 + 627200z12 − 17248000z9 + 1448832000z6

+ 19317760000z3 − 38635520000
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Roots of Yablonskii–Vorob’ev PolynomialQ25(z)

–10

–5

0

5

10

–10 –5 0 5
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Theorem (Fukutani, Okamoto & Umemura [2000])

• The polynomial Qn(z) has 1
2n(n + 1) simple roots.

• The polynomials Qn(z) and Qn+1(z) have no common roots.

Theorem (PAC & Joshi)

• The polynomials Q2n−1(z) and Q2n(z) have n real roots.

• The real roots of Qn−1(z) and Qn+1(z) and of Qn(z) and Qn+1(z) interlace.

Remarks
• Since Qn(z) has only simple roots then

Qn(z) =

n(n+1)/2∏
j=1

(z − an,j)

where an,j, for j = 1, 2, . . . , 1
2n(n + 1), are the roots. These roots satisfy

n(n+1)/2∑
j=1,j 6=k

1

(an,j − an,k)3
= 0, j = 1, 2, . . . , 1

2n(n + 1)

• If An = max
1≤j≤n(n+1)/2

{|an,j|} then n2/3 ≤ An+2 ≤ 4n2/3 (Kametaka [1983]).
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Determinantal Form of Rational Solutions of PII
Theorem (Kajiwara & Ohta [1996])

Let ϕk(z) be the polynomial defined by
∞∑
j=0

ϕj(z)λ
j = exp

(
zλ− 4

3λ
3
)
, ϕj(z) = 1F2(a; b1, b2; z

3/36)

and τn(z) be the n× n determinant given by

τn(z) =

∣∣∣∣∣∣∣∣
ϕn ϕn+1 · · · ϕ2n−1

ϕn−2 ϕn−1 · · · ϕ2n−3
... ... . . . ...

ϕ−n+2 ϕ−n+3 · · · ϕ1

∣∣∣∣∣∣∣∣ ≡
∣∣∣∣∣∣∣∣
ϕ1 ϕ3 · · · ϕ2n−1

ϕ′1 ϕ′3 · · · ϕ′2n−1... ... . . . ...
ϕ

(n−1)
1 ϕ

(n−1)
3 · · · ϕ(n−1)

2n−1

∣∣∣∣∣∣∣∣
then

wn(z) =
d

dz
ln

{
τn−1(z)

τn(z)

}
satisfies PII with α = n.

Remarks
• Flaschka and Newell [1980], following the earlier work of Airault [1979], expressed

the rational solutions of PII as the logarithmic derivatives of determinants.

• The Yablonskii–Vorob’ev polynomials can be expressed as Schur polynomials.
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Discriminants of Yablonskii–Vorob’ev Polynomials
• Let f (z) = zm+am−1z

m−1 + . . .+a1z+a0 be a monic polynomial of degree m with
roots α1, α2, . . . , αm, so f (z) =

∏m
j=1(z − αj).

• The discriminant of f (z) is Dis(f ) =
∏

1≤j<k≤m(αj − αk)2.
• For the Yablonskii–Vorob’ev polynomials

Dis(Q2(z)) = −24 33

Dis(Q3(z)) = 220 312 55

Dis(Q4(z)) = 260 327 520 77

Dis(Q5(z)) = 2140 366 545 728

Dis(Q6(z)) = −2280 3147 580 763 1111

Dis(Q7(z)) = 2504 3270 5125 7112 1144 1313

Dis(Q8(z)) = 2840 3450 5195 7175 1199 1352

Dis(Q9(z)) = 21320 3702 5305 7252 11176 13117 1717

Dis(Q10(z)) = −21980 31026 5455 7343 11275 13208 1768 1919

Dis(Q11(z)) = 22860 31443 5645 7469 11396 13325 17153 1976

Dis(Q12(z)) = 24004 31974 5875 7651 11539 13468 17272 19171 2323
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Hamiltonian Representation
PII can be written as the Hamiltonian system

q′ =
∂HII

∂p
= p− q2 − 1

2z

p′ = − ∂HII

∂q
= 2qp + α + 1

2

(II)

whereHII(q, p, α) is the Hamiltonian defined by

HII(q, p, α) = 1
2p

2 − (q2 + 1
2z)p− (α + 1

2)q

Eliminating p then q = w satisfies PII whilst eliminating q yields

pp′′ = 1
2(p
′)2 + 2p3 − zp2 − 1

2(α + 1
2)

2 P34

Theorem (Okamoto [1986])
The function σ(z) = HII ≡ 1

2p
2 − (q2 + 1

2z)p− (α + 1
2)q satisfies

(σ′′)
2
+ 4 (σ′)

3
+ 2σ′ (zσ′ − σ) = 1

4(α + 1
2)

2

and conversely

q(z) =
2σ′′(z) + α + 1

2

4σ′(z)
, p(z) = −2σ′(z)

is a solution of (II).
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Remarks on Hamiltonians for Painlevé Equations
1. Each Hamiltonian function σ = HJ satisfies a second-order second-degree ordinary

differential equation whose solutions are in a 1-1 correspondence with solutions of
the associated Painlevé equation through

dq

dz
=
∂HJ

∂p
,

dp

dz
= −∂HJ

∂q

since
q = FJ(σ, σ

′, σ′′, z), p = GJ(σ, σ
′, σ′′, z)

for suitable functions FJ(σ, σ
′, σ′′, z) and GJ(σ, σ

′, σ′′, z). Thus given q and p one can
determine σ and conversely, given σ one can determine q and p.

2. The ordinary differential equations which the σ functions satisfy are part of the clas-
sification of second-order, second-degree equations of Painlevé type by Cosgrove
and Scoufis [1993]. They were first derived by Chazy [1911] and later rederived by
Bureau [1964].

3. The Hamiltonian functions σ = HJ frequently arise in applications, e.g.

• Random Matrix Theory (Tracy and Widom [1994–1996]; see also Forrester and
Witte [2001, 2002])
• Statistical Physics (Jimbo, Miwa, Mori and Sato [1980])
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Affine Weyl Groups
Okamoto [1986–1987] has shown that PII–PVI admit the action of affine Weyl groups
of types A(1)

1 , C(1)
2 , A(1)

2 , A(1)
3 and D(1)

4 , respectively, which are related to the associated
Bäcklund transformations.

Example Suppose that w(z;α) is a solution of PII

w′′ = 2w3 + zw + α

Then
S w(z;−α) = −w(z;α)

T± w(z;α± 1) = −w(z;α)− 2α± 1

2w2(z;α)± 2w′(z;α) + z
are also solutions of PII. Since the composition of two Bäcklund transformations is a
Bäcklund transformation, consider the group of Bäcklund transformations.
• The Bäcklund transformations S and T+ (or T−) generate the groupW = 〈S,T+〉,

which is isomorphic to the affine Weyl group of type A(1)
1 , with

S2 = T+ T− = T−T+ = I
where I is the identity transformation.
• On the space of the parameter α, the group is generated by a reflection S and a

translation T+ (or T−), with
S(α) = −α, T±(α) = α± 1
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Classical Solutions of PIV

d2w

dz2
=

1

2w

(
dw

dz

)2

+
3

2
w3 + 4zw2 + 2(z2 − α)w +

β

w
PIV

Theorem
1. PIV has rational solutions if and only if

(i) (α, β) =
(
m,−2(2n−m + 1)2

)
or (ii) (α, β) =

(
m,−2(2n−m + 1

3)
2
)

with m,n ∈ Z. Further the rational solutions for these parameter values are unique.

2. PIV has solutions expressible in terms of the Riccati equation

zw′ = ε(w2 + 2zw)− 2(1 + εα)

if and only if

(i) β = −2(2n + 1 + εα)2 or (ii) β = −2n2

with n ∈ Z and ε = ±1. The Riccati equation has solution

w(z) = −εϕ′(z)/ϕ(z)

where

ϕ(z) = {C1Dν(ζ) + C2D−ν(ζ)} exp(1
2εz

2), ν = −1
2(1 + 2α + ε), ζ =

√
2 z

with Dν(ζ) the parabolic cylinder function.
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Rational and Special Function Solutions of PIV
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PIV — Generalized Hermite Polynomials
Theorem (Noumi & Yamada [1998])

Suppose that Hm,n(z), with m,n ≥ 0, satisfies the recurrence relations

2mHm+1,nHm−1,n = Hm,nH
′′
m,n −

(
H ′m,n

)2
+ 2mH2

m,n

−2nHm,n+1Hm,n−1 = Hm,nH
′′
m,n −

(
H ′m,n

)2 − 2nH2
m,n

with H0,0(z) = H1,0(z) = H0,1(z) = 1, H1,1(z) = 2z then

w(i)
m,n = w(z;α(i)

m,n, β
(i)
m,n) =

d

dz
ln

(
Hm+1,n

Hm,n

)
w(ii)
m,n = w(z;α(ii)

m,n, β
(ii)
m,n) =

d

dz
ln

(
Hm,n

Hm,n+1

)
w(iii)
m,n = w(z;α(iii)

m,n, β
(iii)
m,n) = −2z +

d

dz
ln

(
Hm,n+1

Hm+1,n

)
are respectively solutions of PIV for

(α(i)
m,n, β

(i)
m,n) = (2m + n + 1,−2n2)

(α(ii)
m,n, β

(ii)
m,n) = (−m− 2n− 1,−2m2)

(α(iii)
m,n, β

(iii)
m,n) = (n−m,−2(m + n + 1)2)
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Roots of the Generalized Hermite PolynomialsHm,n(z)
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Properties of the Generalized Hermite Polynomials
•Hn,1(z) = Hn(z), where Hn(z) is the Hermite polynomial defined by

Hn(z) = (−1)n exp
(
z2

) dn

dzn
{
exp

(
−z2

)}
• The polynomial Hm,n(z) can also be expressed as the multiple integral

Hm,n(z) =
πm/2

∏m
k=1 k!

2m(m+2n−1)/2

∫ ∞

−∞
· · ·n

∫ ∞

−∞

n∏
i=1

n∏
j=i+1

(xi − xj)2
n∏
k=1

(z − xk)m

× exp
(
−x2

1 − x2
2 − . . .− x2

n

)
dx1 dx2 . . . dxn

which arises in random matrix theory (Brézin & Hikami [2000], Chan & Feigen
[2006], Forrester & Witte [2001])

• The monic polynomials orthogonal on the real line with respect to the weight
w(x; z,m) = (x− z)m exp(−x2)

satisfy the three-term recurrence relation
xpn(x) = pn+1(x) + an(z;m)pn(x) + bn(z;m)pn−1(x)

where

an(z;m) = −1

2

d

dz
ln

(
Hn+1,m

Hn,m

)
, bn(z;m) =

nHn+1,mHn−1,m

2H2
n,m

(Chan & Feigen [2006])
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PIV — Generalized Okamoto Polynomials
Theorem (Noumi & Yamada [1998])

Suppose that Qm,n(z), with m,n ∈ Z, satisfies the recurrence relations

Qm+1,nQm−1,n = 9
2

[
Qm,nQ

′′
m,n −

(
Q′m,n

)2
]

+
[
2z2 + 3(2m + n− 1)

]
Q2
m,n

Qm,n+1Qm,n−1 = 9
2

[
Qm,nQ

′′
m,n −

(
Q′m,n

)2
]

+
[
2z2 + 3(1−m− 2n)

]
Q2
m,n

with Q0,0 = Q1,0 = Q0,1 = 1 and Q1,1 =
√

2 z then

w̃(i)
m,n = w(z; α̃(i)

m,n, β̃
(i)
m,n) = −2

3z +
d

dz
ln

(
Qm+1,n

Qm,n

)
w̃(ii)
m,n = w(z; α̃(ii)

m,n, β̃
(ii)
m,n) = −2

3z +
d

dz
ln

(
Qm,n

Qm,n+1

)
w̃(iii)
m,n = w(z; α̃(iii)

m,n, β̃
(iii)
m,n) = −2

3z +
d

dz
ln

(
Qm,n+1

Qm+1,n

)
are respectively solutions of PIV for

(α̃(i)
m,n, β̃

(i)
m,n) = (2m + n,−2(n− 1

3)
2)

(α̃(ii)
m,n, β̃

(ii)
m,n) = (−m− 2n,−2(m− 1

3)
2)

(α̃(iii)
m,n, β̃

(iii)
m,n) = (n−m,−2(m + n + 1

3)
2)
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Roots of the Generalized Okamoto PolynomialsQm,n(z), m,n > 0

–8

–6

–4

–2

0

2

4

6

8

–6 –4 –2 0 2 4 6 8 –8

–6

–4

–2

0

2

4

6

8

–6 –4 –2 0 2 4 6 8

Q10,10(z) Q11,9(z)

m× n “rectangles” and “equilateral triangles” with sides m− 1 and n− 1

“Methods of Integrable Systems in Geometry”, LMS Durham Symposium, August 2006 42



Roots of the Generalized Okamoto PolynomialsQm,n(z), m,n < 0
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Asymptotics of PIV — Nonlinear Harmonic Oscillator
Consider the special case of PIV wherew(z) = 2

√
2 y2(x) and x =

√
2 z, with α = 2ν+1

and β = 0, i.e.
d2y

dx2
= 3y5 + 2xy3 + (1

4x
2 − ν − 1

2)y (1)

and the boundary condition

y(x)→ 0, as x→ +∞ (2)

This equation has solutions have exponential decay as x → ±∞ and so are nonlinear
analogues of bound states for the linear harmonic oscillator.

Let yk(x) denote the unique solution of (1) which is asymptotic to kDν(x), i.e.

d2yk
dx2

= 3y5
k + 2xy3

k + (1
4x

2 − ν − 1
2)yk

with boundary condition

yk(x) ∼ kDν(x), as x→ +∞
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• If 0 ≤ k < k∗, where

k2
∗ =

1

2
√

2π Γ(ν + 1)

then this solution exists for all real z as z → −∞.

• If ν = n ∈ N
yk(x) ∼ kDn(x)√

1− 2
√

2π n! k2
, as x→ −∞

• If ν /∈ Z, then for some d and θ0 ∈ R,

yk(x) = (−1)µ
(
−1

6x
)1/2

+ d|x|−1/2 sin

(
x2

2
√

3
− 4d2

√
3

ln |x| − θ0

)
+O

(
|x|−3/2

)
,

as x→ −∞
where µ = [ν + 1], the integer part of ν + 1. Its & Kapaev [1998] determined the
connection formulae for d(k; ν) and θ0(k; ν).

• If k = k∗, then
yk(x) ∼ sgn(k)

(
−1

2x
)1/2

, as x→ −∞
• If k > k∗ then yk(x) has a pole at a finite x0 depending on k, so

yk(x) ∼ sgn(k)(x− x0)
−1/2, as x ↓ x0
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The first two bound state solutions are

yk(x; 0) =
k exp(−1

4x
2)√

1− k2ψ(x)
≡ Ψk(x), yk(x; 1) =

(x + 2Ψ2
k)Ψk√

1− 2xΨ2
k − 4Ψ4

k

where ψ(x) =
√

2π erfc
(

1
2

√
2x

)
[note that ψ(∞) = 0 and ψ(−∞) = 2

√
2π].
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For n ∈ Z+, yk(x;n) exists for all x, has n distinct zeros and decays exponentially to
zero as x→ ±∞ with asymptotic behaviour

yk(x;n) ∼


k exp(−1

4x
2), as x→∞

k exp(−1
4x

2)√
1− 2

√
2π n! k2

, as x→ −∞
k2 <

1

2
√

2π n!
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y′′k = 3y5
k + 2xy3

k + (1
4x

2 − ν − 1
2)yk, yk(x) ∼ kDν(x), as x→ +∞
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Symmetric Form of PIV
(Bureau [1980], Veselov and Shabat [1993], Adler [1994], Noumi & Yamada [1998])
Consider the symmetric PIV system

ϕ′0 + ϕ0(ϕ1 − ϕ2) = 2µ0 (1a)
ϕ′1 + ϕ1(ϕ2 − ϕ0) = 2µ1 (1b)
ϕ′2 + ϕ2(ϕ0 − ϕ1) = 2µ2 (1c)

where µ0, µ1 and µ2 are constants, ϕ0, ϕ1 and ϕ2 are functions of z, with

µ0 + µ1 + µ2 + 1 = 0, ϕ0 + ϕ1 + ϕ2 + 2z = 0

Eliminating ϕ1 and ϕ2, then ϕ0 satisfies PIV

ϕ0ϕ
′′
0 = 1

2(ϕ
′
0)

2 + 3
2ϕ

4
0 + 4zϕ3

0 + 2(z2 − α)ϕ2
0 + β

with
α = µ2 − µ0, β = −2µ2

0

The system (1) is associated with the affine Weyl group A(1)
2 . Note that solving (1a) and

(2) for ϕ1 and ϕ2 yields

ϕ1 = −ϕ
′
0 + ϕ2

0 + 2zϕ0 − 2µ1

2ϕ0
, ϕ2 =

ϕ′0 − ϕ2
0 − 2zϕ0 − 2µ1

2ϕ0

which are Bäcklund transformations for PIV (Lukashevich [1967], Gromak [1975]).
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Open Problems
• Study asymptotics and connection formulae for the Painlevé equations using the

isomondromic deformation method. The uniform approximation procedure should
apply to all the Painlevé equations. The ultimate objective would be to produce a
sufficiently general theorem on uniform asymptotics for linear systems to cover all
the linear systems which arise as isomonodromy problems of the Painlevé equations.
Then application to different connection problems would always appeal to the same
analytical theorem and so reduce to a relatively routine calculation.

• Continue the study of the relationship between Bäcklund transformations and exact
(rational, algebraic and special functions) solutions of Painlevé equations and the
associated isomondromy problems. The aim is to algorithmically derive all these
special properties directly from the isomondromy problems.

Objective
• To provide a complete classification and unified structure for classical solutions,

Bäcklund transformations and other properties of the Painlevé equations and the dis-
crete Painlevé equations — the presently known results are rather fragmentary and
non-systematic.
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