Isotropic minimal surfaces and holomorphic curves in flat tori (Mario J. Micallef; joint work with E. Nedita)

LMS-Durham Symposium on Methods of Integrable Systems in Geometry 19 August 2006

Well-known fact:

Complex submanifolds of Kähler manifolds minimize volume in their homology class and, in particular, are minimal.

Questions:

Can a holomorphic curve be deformed so as to keep it minimal but not holomorphic?

If yes, is stability of the holomorphic curve as a minimal surface preserved by the deformation?

Theorem (C. Arezzo, -)

Let $f: (\Sigma_{\gamma}, \mu) \to \mathbb{C}^n / \Lambda$ be a full holomorphic immersion of a Riemann surface of genus $\gamma \ge 4$. If

$$\frac{1}{2}n(n+1) > 3\gamma - 3 \ge 3n - 3$$

then f can be deformed as a conformal minimal immersion $f_t \colon (\Sigma, \mu) \to \mathbb{R}^{2n} / \Lambda_t$ into a flat torus $\mathbb{R}^{2n} / \Lambda_t$ which is *not* holomorphic with respect to *any* orthogonal complex structure on the torus.

If the Riemann surface (Σ_{γ}, μ) is hyperelliptic, then f_t will be unstable for $t \neq 0$. (An old result of - .)

If (Σ_{γ}, μ) is not hyperelliptic and f is the Abel-Jacobi embedding, then f_t will be stable (and nonholomorphic).

Key ingredients of proof:

- (i) Weierstrass representation of conformal minimal immersions into a flat torus.
- (ii) Characterisation of Weierstrass representation of holomorphic curves.
- (iii) Dimension of the kernel of the map from the symmetric square of the space of holomorphic differentials in the Weierstrass representation to the space of holomorphic quadratic differentials.
- (iv) Complex version of the second variation formula and Birkhoff-Grothendieck decomposition of holomorphic vector bundles over the two-sphere.
- (v) An exact sequence argument to show that when the Abel-Jacobi embedding of a nonhyperelliptic Riemann surface of genus ≥ 4 is viewed as a minimal immersion then its Jacobi fields are just the translations.

What about deformations of a holomorphic curve in a flat torus of complex dimension 2 or 3?

Theorem (- , E. Nedita)

Consider the following smoothly varying 1-parameter families:

- conformal structures μ_t on a surface Σ ;
- lattices Λ_t of \mathbb{R}^4 ;
- conformal minimal immersions $f_t \colon (\Sigma, \mu_t) \to \mathbb{R}^4 / \Lambda_t.$

If f_0 is holomorphic with respect to some orthogonal complex structure J_0 then, for each t, there exists an orthogonal complex structure J_t with respect to which f_t is holomorphic. The proof is an easy consequence of the following fact:

Let K and K^{\perp} denote respectively the Gauss curvature and the curvature of the normal bundle of a minimal immersion $f: \Sigma \to \mathbb{R}^4$. Then

 $|K^{\perp}| \leqslant (-K)$

with equality if, and only if, f is holomorphic with respect to an orthogonal complex structure on \mathbb{R}^4 .

This proof also works for:

- a 1-parameter family of conformal minimal immersions into a hyperkähler 4-manifold. (cf. work with Wolfson on the (elaborate) construction of stable nonholomorphic two-spheres in some K-3 surfaces.)
- a 1-parameter family of conformal minimal immersions of finite total curvature in ℝ⁴. (cf. old theorem of - .)

Alternative proof:

Given an immersion $f: \Sigma \to \mathbb{R}^4$ define J_f on $f^*(T\mathbb{R}^4)$ by anticlockwise rotation by 90° in the tangent plane and anticlockwise rotation by 90° in the normal plane.

The set of orthogonal complex structures on \mathbb{R}^4 compatible with a given orientation is a two-sphere. If f is minimal then $J_f \colon \Sigma \to S^2$ is holomorphic.

What about higher dimensions?

Recall Calabi's notion of isotropicity for a minimal immersion $f: \Sigma \to \mathbb{R}^n$: f is isotropic to order l if

 $(\partial_z^j f \cdot \partial_z^k f) = 0 \qquad \forall j, k \in \{1, \dots, l\}.$

Thus isotropicity to order 1 is equivalent to conformality.

Proposition

A minimal immersion $f: \Sigma \to \mathbb{R}^{2n}$ is holomorphic with respect to some orthogonal complex structure on \mathbb{R}^{2n} if, and only if, f is isotropic to order n.

Theorem (- , E. Nedita)

Consider the following smoothly varying 1-parameter families:

- conformal structures μ_t on a surface Σ ;
- lattices Λ_t of \mathbb{R}^{2n} ;
- conformal minimal immersions $f_t \colon (\Sigma, \mu_t) \to \mathbb{R}^{2n} / \Lambda_t$ all of which are isotropic to order n - 1.

If f_0 is holomorphic with respect to some orthogonal complex structure J_0 then, for each t, there exists an orthogonal complex structure J_t with respect to which f_t is holomorphic.

A similar statement holds for a family of (n-1)-isotropic minimal surfaces of finite total curvature in \mathbb{R}^{2n} .

Lemma

Let $f: \Sigma \to \mathbb{R}^{2n}$ be minimal and isotropic to order n-1. Define

$$J_f: \Sigma \to SO(2n)/U(n)$$

by 90° anticlockwise rotation in the osculating planes and the orthogonal complement of their span. Then J_f is holomorphic.

The theorem follows easily from the lemma.

Questions

- Does the condition of (n-1)-isotropicity place restrictions on the conformal structure of the minimal surface, especially for large genus?
- Does the space of (n-1)-isotropic minimal surfaces have a nice description?

Theorem (- , E. Nedita)

Let $f: \Sigma \to \mathbb{R}^{2n}/\Lambda$ be a stable minimal immersion which is (n-1) isotropic. Then f is holomorphic with respect to

Similarly, if $f: \Sigma \to \mathbb{R}^{2n}$ is a stable minimal immersion which is (n-1) isotropic and if Σ is parabolic in the conformal structure induced by f, then f is holomorphic with respect to

Proposition

Let $f: \Sigma \to \mathbb{R}^{2n}$ be an immersion whose normal bundle ν admits a parallel complex structure J_{ν} . Let J_{Σ} be anticlockwise rotation by 90° on $T\Sigma$ and define

$$J:=J_{\Sigma}\oplus J_{\nu}.$$

Suppose that the second fundamental form maps $T_{\Sigma}^{1,0}$ to $\nu_{\mathbb{C}}^{1,0}$. Then J is constant and f is holomorphic with respect to J.

Of course, the converse holds.