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We might explain unimodularity as a non-obvious use of group-invariance. Simplest

setting: transitive graphs. A graph is a pair G = (V, E) with E a symmetric subset of

V × V. An automorphism of G is a permutation of V that induces a permutation of

E. The set of all automorphisms of G forms a group, Aut(G). We call G transitive if

Aut(G) acts transitively on V (i.e., there is only one orbit).
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(Don Hatch)
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Consider the following examples: Let G be an infinite transitive graph and let P be an

invariant percolation, i.e., an Aut(G)-invariant measure on 2V, on 2E, or even on 2V∪E.

Let ω be a configuration with distribution P.

Example: Could it be that ω is a single vertex? I.e., is there an invariant way to pick

a vertex at random?

No: If there were, the assumptions would imply that the probability p that ω = {x} is

the same for all x, whence an infinite sum of p would equal 1, an impossibility.

Example: Could it be that ω is a finite nonempty vertex set? I.e., is there an invariant

way to pick a finite set of vertices at random?

No: If there were, then we could pick one of the vertices of the finite set at random

(uniformly), thereby obtaining an invariant probability measure on singletons.
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Cluster means connected component of ω. A vertex x is a furcation of a config-

uration ω if removing x would split the cluster containing x into at least 3 infinite

clusters.
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Example: Is the number of furcations P-a.s. 0 or ∞? Yes, for the set of furcations

has an invariant distribution on 2V.

Example: Does P-a.s. each cluster have 0 or ∞ furcations?

This does not follow from elementary considerations as the previous examples do (we

can prove this).
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But suppose we have the following kind of conservation of mass.

We call f : V×V → [0,∞] diagonally invariant if f(γx, γy) = f(x, y) for all x, y ∈ V

and γ ∈ Aut(G).

The Mass-Transport Principle. For all diagonally invariant f , we have

∑

x∈V

f(o, x) =
∑

x∈V

f(x, o) ,

where o is any fixed vertex of G.

Suppose this holds.
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Write K(x) for the cluster containing x.

Now, given the configuration ω, define F (x, y; ω) to be 0 if K(x) has 0 or ∞ furcations,

but to be 1/N if y is one of N furcations of K(x) and 1 ≤ N < ∞. Then F is diagonally

invariant, whence the Mass-Transport Principle applies to f(x, y) := EF (x, y; ω). Since
∑

y F (x, y; ω) ≤ 1, we have
∑

x

f(o, x) ≤ 1 . (1)

If any cluster has a finite positive number of furcations, then each of them receives

infinite mass. More precisely, if o is one of a finite number of furcations of K(o), then
∑

x F (x, o; ω) = ∞. Therefore, if with positive probability some cluster has a finite

positive number of furcations, then with positive probability o is one of a finite number

of furcations of K(o), and therefore E
[

∑

x F (x, o; ω)
]

= ∞. That is,
∑

x f(x, o) = ∞,

which contradicts the Mass-Transport Principle and (1).
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Call G unimodular if the Mass-Transport Principle holds for G. Which graphs enjoy

this wonderful property? All graphs do that are properly embedded in euclidean or

hyperbolic space with a transitive action of isometries of the space. All Cayley graphs

do:

We say that a group Γ is generated by a subset S of its elements if the smallest

subgroup containing S is all of Γ. In other words, every element of Γ can be written

as a product of elements of the form s or s−1 with s ∈ S. If Γ is generated by S,

then we form the associated Cayley graph G with vertices Γ and (unoriented) edges
{

(x, xs) ; x ∈ G, s ∈ S∪S−1
}

. Because S generates Γ, the graph is connected. Cayley

graphs are transitive since left multiplication by yx−1 is an automorphism of G that

carries x to y.
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Now if f : Γ2 → [0,∞] is diagonally invariant, then for o the identity of Γ and any

x ∈ Γ, we have f(o, x) = f(x−1, o). Since inversion preserves counting measure on Γ,

we obtain the Mass-Transport Principle.

(For a general transitive graph, the Mass-Transport Principle is equivalent to unimod-

ularity of Haar measure on Aut(G). History: Liggett (1985), Adams (1990), van den

Berg and Meester (1991), Häggström (1997), Benjamini, L., Peres, Schramm (1999). I

ignore other uses of unimodularity in probability that go back considerably longer.)
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Non-example: the “grandparent” graph of Trofimov:
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The grandparent graph is not unimodular: let f(x, y) be the indicator that y is the

grandparent of x. Then
∑

x

f(o, x) = 1

while
∑

x

f(x, o) = 4 .

Another definition: G is amenable if there is a sequence Kn of finite vertex sets in G

such that the number of neighbors of Kn divided by the size of Kn tends to 0.

Example: Z
d

Non-examples: regular trees of degree at least 3; hyperbolic tessellations.

All amenable transitive graphs are unimodular (Soardi and Woess).
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A selection of theorems:

Bernoulli(p) percolation on G puts each edge in ω independently with probability p.

The probability of an infinite cluster in ω is 0 or 1 by Kolmogorov’s 0-1 Law. It increases

in p, so there is a critical value pc where it changes. What is the probability of an

infinite cluster at pc? Benjamini and Schramm conjectured it is 0 on any transitive

graph, provided that pc < 1. It was known for Z
d for d = 2 (Kesten) and d ≥ 19 (Hara

and Slade).

Theorem (BLPS 1999). This is true for all non-amenable transitive unimodular

graphs.

It is unknown whether this holds for non-unimodular graphs.
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Theorem (Häggström; Häggström and Peres; L. and Peres; L. and Schramm).

Let G be a transitive unimodular graph. Given invariant random transition probabili-

ties pω(x, y) and an invariant p-stationary measure νω(x), biasing ω by νω(o) gives a

measure that is invariant from the point of view of the walker.

Example: Degree-biasing for simple random walk on the clusters.

This is false on non-unimodular graphs.
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Theorem (Aldous and L.). Let G be a transitive unimodular graph. Given in-

variant random symmetric rates rω(x, y) such that E
[
∑

x r(o, x)
]

< ∞, the associated

continuous-time random walk has no explosions a.s.

This is false on non-unimodular graphs.
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Proof. Let Z := E
[
∑

x r(o, x)
]

. Consider the discrete-time random walk 〈Xn ; n ≥ 0〉

corresponding to the weights rω(x, y). This has a stationary measure

νω(x) :=
∑

y

rω(x, y)/Z .

It also describes the steps of the continuous-time random walk, ignoring the waiting

times. Biasing by νω gives a probability measure. The continuous-time random walk

moves from x at rate
∑

y rω(x, y) = Zνω(x), so spends expected time 1/
(

Zνω(x)
)

before moving (given ω). Thus, it explodes w.p.p. given 〈Xn〉 iff
∑

n 1/νω(Xn) < ∞

by the Borel-Cantelli lemma. But this sum is infinite by stationarity and Poincaré’s

recurrence theorem (which applies because the biased measure is finite).
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Theorem (Fontes and Mathieu; Aldous and L.). Let G be a transitive uni-

modular graph. Given invariant random pairs of symmetric rates
(

rω, Rω

)

such that

rω(x, y) ≤ Rω(x, y)

for all x, y and almost all ω, let pt(o, o) and Pt(o, o) be the expected [annealed] return

probabilities for the associated continuous-time (minimal) random walks. Then for all

t > 0, we have

pt(o, o) ≥ Pt(o, o) .

It is unknown whether this holds for non-unimodular graphs. It is also unknown if we

assume invariance of rω and Rω separately.
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Proof. Let

aω(x, y) :=

{

−rω(x, y) if x 6= y,
∑

z rω(x, z) if x = y

and

Aω(x, y) :=

{

−Rω(x, y) if x 6= y,
∑

z Rω(x, z) if x = y.

Then

pω
t (x, y) =

(

e−taω

)

(x, y) and Pω
t (x, y) =

(

e−tAω

)

(x, y) .

Thus,

pt(o, o) = E
[

e−taω (o, o)
]

=: Tr
[

e−taω

]

.

Since

[

1 −1
−1 1

]

≥ 0, we have aω ≤ Aω. Therefore

pt(o, o) = Tr
[

e−taω

]

≥ Tr
[

e−tAω

]

= Pt(o, o) .
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Extensions of unimodularity:

On finite graphs, the Mass-Transport Principle is obvious if we take o to be a uniform

random “root” and average over o:

E
[

∑

x

f(o, x)
]

= E
[

∑

x

f(x, o)
]

. (2)

This is just interchanging the order of summation. But it is crucial that the root be

chosen uniformly. Indeed, (2) characterizes the uniform measure.

Consider this graph:

We should choose o to be a blue vertex with probability twice that of a black vertex in

order that (2) hold.
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With this graph:

we should choose o to be a blue vertex with probability four times that of a black vertex

in order that the Mass-Transport Principle hold,

E
[

∑

x

f(o, x)
]

= E
[

∑

x

f(x, o)
]

.
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What about the hyperbolic triangle tessellation?
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We call G quasi-transitive if Aut(G) acts quasi-transitively on V (i.e., there are

only finitely many orbits). If G is quasi-transitive and amenable, then each orbit has

a natural frequency (BLPS), which should be used for the probability of choosing a

representative from that orbit for o in the Mass-Transport Principle,

E
[

∑

x

f(o, x)
]

= E
[

∑

x

f(x, o)
]

.

If there are probabilities αi for the orbit representatives o1, . . . , oL such that choos-

ing oi with probability αi makes the Mass-Transport Principle true, then we call G

unimodular.

How do we tell? The following is necessary and sufficient: if x is in the orbit of oi and

y is in the orbit of oj , then
|S(x)y|

|S(y)x|
=

αj

αi

,

where S(x) :=
{

γ ∈ Aut(G) ; γx = x
}

.
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Consider now the space of rooted graphs or networks. In fact, consider only rooted-

isomorphism classes of networks. A probability measure on this space is unimodular

if the Mass-Transport Principle holds:

E
[

∑

x∈V(G)

f(G; o, x)
]

= E
[

∑

x∈V(G)

f(G; x, o)
]

(3)

for all Borel non-negative f that are diagonally invariant under isomorphisms.

For example, as observed by Benjamini/Schramm and by Aldous/Steele, all weak limits

of uniformly rooted finite networks are unimodular.
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All the theorems given for transitive unimodular graphs hold for unimodular random

rooted networks (Aldous-L.).

Example: If we want the offspring distribution 〈pk〉 for a unimodular version UGW

of Galton-Watson trees, let rk := c−1pk−1/k for k ≥ 1 and r0 := 0, where c :=
∑

k≥0 pk/(k + 1). With the sequence 〈rk〉 and n vertices, give each vertex k balls with

probability rk, independently. Then pair the balls at random and place an edge for each

pair between the corresponding vertices. There may be one ball left over; if so, ignore

it. In the limit, we get a random tree where the root has degree k with probability rk

and each neighbor of the root has an independent Galton-Watson(〈pk〉) tree.
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(150 vertices with p1 = p2 = 1/2)
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Example: Biasing UGW by the degree of the root gives a stationary measure for simple

random walk (L., Pemantle and Peres):

GW
o

GW

Example: Aperiodic tessellations. Like Palm measure.
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