Random walks and the lace expansion I

Gordon Slade University of British Columbia

Durham: July, 2007

Abstract

e an introduction to the lace expansion with emphasis on recent to:

neration of self-avoiding walks, and

lysis of random walks on the incipient infinite cluster for oriented

s at http://www.math.ubc.ca/~slade.

n supported in part by NSERC.

The lace expansion

ydges–Spencer (1985) to analyse weakly SAW for d>4.

xtended by several people to analyse the critical behaviour of:

> 4,

s and lattice animals for d>8,

for d > 6,

= directed) percolation for d>4,

ocess, Ising model for d > 4.

d to enumerate SAWs in all dimensions.

Slade, The Lace Expansion and its Applications, Springer LNM 1879, (2006).

Simple random walk

 \mathbb{Z}^d . Choose one of the 2d neighbours at random and step to it. Continue and steps to a neighbour of current position.

he position after n steps. Let $s_n(x)$ be the number of n-step SRWs with number of n-step SRWs.

ion: $s_n(x)=\sum_{y\in\mathbb{Z}^d}s_1(y)s_{n-1}(x-y)$, which can easily be solved. $s_n=2ds_{n-1}$ which has solution $s_n=(2d)^n$.

isplacement: $E|\omega(n)|^2=n$.

Self-avoiding walk

the set of $\omega:\{0,1,\ldots,n\} o \mathbb{Z}^d$ with: n)=x, $|\omega(i+1)-\omega(i)|=1$, and $\omega(i)
eq \omega(j)$ for all i
eq j. $\mathbb{Z}^d\mathcal{S}_n(x)$

$$|\mathcal{S}_n(x)|$$
. Let $c_n = \sum_x c_n(x) = |\mathcal{S}_n|$.
As in \mathcal{S}_n to be equally likely: each has probability c_n^{-1} .

and
$$E|\omega(n)|^2=c_n^{-1}\sum_{\omega\in\mathcal{S}_n}|\omega(n)|^2=c_n^{-1}\sum_{x\in\mathbb{Z}^d}|x|^2c_n(x)$$
 .

Critical exponents

estant $\mu = \lim_{n \to \infty} c_n^{1/n}$ exists because $c_{n+m} \le c_n c_m$. $\le 2d-1$.

ymptotic behaviour:

$$c_n \sim A\mu^n n^{\gamma-1}, \quad E|\omega(n)|^2 \sim Dn^{2\nu}$$

critical exponents γ and u (and \log corrections for d=4).

 $=rac{43}{32}$ and $u=rac{3}{4}$ will follow if scaling limit is ${
m SLE}_{8/3}$ (Lawler–Schramm–

rigorous results.

 $\gamma=1$ and $u=rac{1}{2}$ with $(\log n)^{1/4}$ corrections for hierarchical lattice e 2003).

=1 and $u=rac{1}{2}$ (Hara–Slade 1992).

for d=2,3,4? Best bound is $\mu^n \leq c_n \leq \mu^n e^{Cn^{2/(d+2)}\log n}$. If $cn \leq E|\omega(n)|^2 \leq Cn^{2-\epsilon}$.

Critical exponents for d=3

to compute the exponents:

eory (physics)

Carlo (walks of length 640,000 have been simulated)

numeration plus series analysis: determine c_n exactly for $n=1,2,\ldots,N$ is sequence to determine $\mu,A,\gamma.$

back to Domb (1949) and was later developed at King's College London; bed is Melbourne.

SAW enumeration using the lace expansion

n Nathan Clisby (Melbourne) and Richard Liang (Berkeley).

 $569\,905\,525\,454\,674\,614$ $492.3\ldots$

 $852\,857\,467\,211\,187\,784$ $14450.8\dots$

 $742\,525\,570\,299\,581\,210\,090$ 3.3×10^{8}

 $89\,265\,092\,167\,904\,101\,731\,532$ 2.3×10^{10}

wn values due to MacDonald et al 2000 (d=3), (d=4,5,6).

SAW enumeration using the lace expansion

```
called the "two-step method" was also crucial.)
```

k 15000 CPU hours; took 4400 CPU hours.

"finite lattice method" is remarkable (Jensen 2004):

 $93\,020\,903\,935\,054\,619\,120\,005\,916$

pansion cannot compete.

Series analysis

ritical parameters for d=3: $c_n \sim A \mu^n n^{\gamma-1}$, $E[|\omega(n)|^2] \sim D n^{2\nu}$.

4043(12)

68(8) [Caracciolo et al 1998, MC: 1.1575(6)]

76(5) [Prellberg 2001, MC: 0.5874(2)]

 $6(5), \quad D = 1.220(12).$

obtained for μ , A, D in dimensions $4 \leq d \leq 8$; accuracy improves as $d \uparrow$.

The lace expansion: Recursion relation

ction $\pi_m(x)$ such that for $n\geq 1$,

$$c(x) = \sum_{y \in \mathbb{Z}^d} c_1(y) c_{n-1}(x-y) + \sum_{m=2}^n \sum_{y \in \mathbb{Z}^d} \pi_m(y) c_{n-m}(x-y).$$

 $_{\in \mathbb{Z}^d}\,\pi_m(y)$ and sum over $x\in \mathbb{Z}^d$ to get:

$$c_n = 2dc_{n-1} + \sum_{m=2}^{n} \pi_m c_{n-m}.$$

 $(\pi_m)_{1 \leq m \leq n}$ is equivalent to knowledge of $(c_m)_{0 \leq m \leq n}$.

The lace expansion: graphs

 $\sigma_n(x)=$ set of m-step simple random walks that start at the origin and end

$$U_{st}(\omega) = \begin{cases} -1 & \text{if } \omega(s) = \omega(t) \\ 0 & \text{if } \omega(s) \neq \omega(t). \end{cases}$$

o, let

$$K[a, b] = K_{\omega}[a, b] = \prod_{a \le s < t \le b} (1 + U_{st}).$$

$$c_n(x) = \sum_{\omega \in \mathcal{W}_n(x)} K_{\omega}[0, n].$$

t of pairs st with s < t. Let $\mathcal{B}_{[a,b]}$ denote the set of all graphs on [a,b].

The lace expansion: connected graphs

$$K[0, n] = \prod_{0 \le s < t \le n} (1 + U_{st}) = \sum_{\Gamma \in \mathcal{B}_{[0,n]}} \prod_{st \in \Gamma} U_{st}.$$

connected on [a,b] if, as intervals of real numbers, $\cup_{st\in\Gamma}(s,t)=(a,b)$. Sonnected graphs on [a,b] is denoted $\mathcal{G}_{[a,b]}$. Let

$$J[0, n] = \sum_{\Gamma \in \mathcal{G}_{[0,n]}} \prod_{st \in \Gamma} U_{st}.$$

$$K[0,n] = K[1,n] + \sum_{m=2}^{n} J[0,m]K[m,n].$$

$$c_n(x) = \sum_{\omega \in \mathcal{W}_n(x)} K_{\omega}[0, n].$$

$$\sum_{\omega \in \mathcal{W}_n(x)} K_{\omega}[1,n] = \sum_{y \in \mathbb{Z}^d} c_1(y) c_{n-1}(x-y).$$

5

The lace expansion: factorisation

$$I_{\omega}[0,m]K_{\omega}[m,n] = \sum_{y} \sum_{m=2}^{n} \sum_{\omega_{1} \in \mathcal{W}_{m}(y)} J_{\omega_{1}}[0,m] \sum_{\omega_{2} \in \mathcal{W}_{n-m}(x-y)} K_{\omega_{2}}[0,n-m].$$

$$\sum_{y} \sum_{m=2}^{n} \pi_m(y) c_{n-m}(x-y)$$

$$\pi_m(y) = \sum_{\omega \in \mathcal{W}_m(y)} J_\omega[0,m].$$

$$x) = \sum_{y} c_1(y)c_{n-1}(x-y) + \sum_{y} \sum_{m=2}^{n} \pi_m(y)c_{n-m}(x-y).$$

The lace expansion: laces

[n], choose a 'minimal' connected $L\subset \Gamma$, lenote the edges which are compatible with L in the sense that L remains oice for $\Gamma=L\cup\{st\}$.

ces L with N=1,2,3,4 edges:

The lace expansion: resummation

$$\begin{split} [0,m] &= \sum_{L \in \mathcal{L}_{[0,m]}} \prod_{st \in L} U_{st} \sum_{\Gamma \in \mathcal{G}_{[0,m]}(L)} \prod_{s't' \in \Gamma \setminus L} U_{s't'} \\ &= \sum_{L \in \mathcal{L}_{[0,m]}} \prod_{st \in L} U_{st} \prod_{s't' \in \mathcal{C}(L)} (1 + U_{s't'}) \\ &= \sum_{N=1}^{\infty} (-1)^{N} \sum_{L \in \mathcal{L}_{[0,m]}^{(N)}} \prod_{st \in L} [-U_{st}] \prod_{s't' \in \mathcal{C}(L)} (1 + U_{s't'}), \\ \pi_{m}(x) &= \sum_{N=1}^{\infty} (-1)^{N} \pi_{m}^{(N)}(x) \end{split}$$

$$f(x) = \sum_{\omega \in \mathcal{W}_m(x)} \sum_{L \in \mathcal{L}_{[0,m]}^{(N)}} \prod_{st \in L} [-U_{st}(\omega)] \prod_{s't' \in \mathcal{C}(L)} (1 + U_{s't'}(\omega)).$$

The lace expansion: lace graphs

$$f(x) = \sum_{\omega \in \mathcal{W}_m(x)} \sum_{L \in \mathcal{L}_{[0,m]}^{(N)}} \prod_{st \in L} [-U_{st}(\omega)] \prod_{s't' \in \mathcal{C}(L)} (1 + U_{s't'}(\omega)).$$

the walks that give nonzero products in the above sum, and this is what we enumerate.

Lace graphs for N=1,2,3,4,11.

The lace expansion: smaller enumeration task

find that the ratio of SAWs to lace graphs is approximately

d = 2, n = 30: 36

d = 3, n = 30: 525

d = 4, n = 24: 1700

d = 5, n = 24: 6200

d = 6, n = 24: 20000

of $(\pi_m)_{m \leq M}$ in dimensions $d \leq \frac{M}{2}$ gives $(\pi_m)_{m \leq M}$ in all dimensions d. $d \leq 12$ gives $(c_n)_{n \leq 24}$ in all dimensions d.

2	$\delta = 3$	$\delta = 4$	$\delta = 5$	$\delta = 6$
1	0	0	0	0
3	0	0	0	0
3	-4	0	0	0
9	15	0	0	0
)	-86	-27	0	0
1	300	106	0	0
5	-1511	-1 340	- 248	0
5	5 297	5 333	966	0
3	-25 566	-52 252	-25 020	-2830
1	91 234	211 403	100 988	10 755
4	- 435 330	-1 907 566	-1850364	- 515 509
4	1 586 306	7 854 601	7 6 3 5 8 2 2	2 029 500
3	-7 568 792	-68 777 498	- 123 248 980	-64 816 437
5	28 105 857	288 074 727	517 006 517	260 695 401
В	- 134 512 520	-2 498 227 824	-7899351270	-7074329136
7	507 675 751	10 626 960 167	33 569 520 427	28 860 719 280
5	-2 438 375 322	-92 047 793 514	- 500 752 577 733	- 724 291 034 691
7	9 330 924 963	396 919 882 288	2 150 581 793 271	2 984 307 507 943
1	-44 965 008 206	-3 445 692 397 195	-31 789 616 257 271	-72 005 867 458 629
2	174 103 216 625	15 035 569 992 917	137 713 940 393 321	298 797 296 949 195
9	- 841 380 441 626	- 130 974 140 581 412	-2032548406479564	-7 072 798 632 884 530
5	3 290 830 791 268			
В	-15 941 476 401 251			
5	62 897 919 980 935			
7	- 305 298 415 550 796			
2	1 213 812 491 872 081			
3	-5 901 490 794 431 276			

Inclusion-exclusion

contributing to the two-point function are regarded as a string of mutually-(= vertices):

ually avoiding. The problem would be easy if the beads were independent

ernate view: The lace expansion is an inclusion-exclusion argument that s as independent to first order, with explicit higher order corrections.

ns give rise to lace graphs.

The lace expansion via inclusion-exclusion

$$c_n(x) = \sum_{y} c_1(y)c_{n-1}(x-y) - R_n^{(1)}(x)$$

$$R_n^{(1)}(x) = \bigcup_{x \in \mathcal{X}} x$$

sion again:

$$R_n^{(1)}(x) = \sum_{m=2}^n u_m c_{n-m}(x) - R_n^{(2)}(x)$$

$$R_n^{(2)}(x) = 0 \qquad x$$

The lace expansion via inclusion-exclusion

s to

$$x) = \sum_{y} c_1(y)c_{n-1}(x-y) + \sum_{m=2}^{n} \sum_{y} \pi_m(y)c_{n-m}(x-y)$$

$$\pi_m(y) = -\delta_{0,y} \stackrel{0}{\longleftarrow} + 0 \stackrel{y}{\longleftarrow} y - \stackrel{y}{\longleftarrow} + \cdots$$

1/d expansions

rsion relation

$$c_n = 2dc_{n-1} + \sum_{m=2}^{n} \pi_m c_{n-m}.$$

erating functions

$$\chi(z) = \sum_{n=0}^\infty c_n z^n, \quad \Pi(z) = \sum_{m=2}^\infty \pi_m z^m.$$

elation gives

$$\chi(z) = \frac{1}{1 - 2dz - \Pi(z)}.$$

convergence of $\chi(z)$ is $z_c=\mu^{-1}$, and $\chi(z_c)=\infty$, so

$$1 - 2dz_c - \Pi(z_c) = 0.$$

1/d expansions: truncation

int is given implicitly by

$$z_c = rac{1}{2d}[1 - \Pi(z_c)] = rac{1}{2d}\left[1 - \sum_{m=2}^{\infty}\sum_{M=1}^{\infty}(-1)^M\pi_m^{(M)}z_c^m
ight].$$

ed this to prove that there exist $a_i \in \mathbb{Z}$ such that

$$z_c \sim \sum_{i=1}^{\infty} rac{a_i}{(2d)^i} \quad ext{as } d o \infty.$$

e gives (in high d)

$$\sum_{m=2}^{\infty} \sum_{M=N}^{\infty} \pi_m^{(M)} z_c^m \le C_N d^{-N}$$

in high d)

$$\sum_{m=j}^{\infty}\pi_m^{(M)}z_c^m \leq C_{M,j}d^{-j/2}.$$

1/d expansions: results

edge of $\pi_m^{(M)}$ for $m \leq 2N$ and $M \leq N$ permits the recursive calculation $\dots, N+1$.

 $m \leq 24$ and $M \leq 12$ gives

$$-1 - \frac{1}{2d} - \frac{3}{(2d)^2} - \frac{16}{(2d)^3} - \frac{102}{(2d)^4} - \frac{729}{(2d)^5} - \frac{5533}{(2d)^6} - \frac{42229}{(2d)^7}$$

$$\frac{88761}{(2d)^8} - \frac{1026328}{(2d)^9} + \frac{21070667}{(2d)^{10}} + \frac{780280468}{(2d)^{11}} + O\left(\frac{1}{(2d)^{12}}\right).$$

e full asymptotic series is divergent. Note sign change at order $(2d)^{-10}$.

ons result for the amplitudes A and D, using e.g.,

$$rac{1}{A}=2dz_c+\sum_{m=2}^{\infty}m\pi_mz_c^m$$