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Abstract
e an introduction to the lace expansion with emphasis on recent
 to:
reration of self-avoiding walks, and
lysis of random walks on the incipient infinite cluster for oriented

s at http://www.math.ubc.ca/~slade.
1 supported in part by NSERC.



Spread-out oriented percolation

on on the directed graph with vertices (z,n), « € Z% n =0,1,2, ...

onds ((z,n), (y,n + 1)) with ||x — y|| < L (later: L large).

pendently “occupied” with probability p and otherwise “vacant.”
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p=0.7> p. ~ 0.645

Oriented percolation has a helpful Markov property.



Phase transition for oriented percolation

,0) — (x, n) if there is an occupied oriented path from (0, 0) to (z, n),
C(an) — {(CE,’I’L) : (070) - (x’n)}

(

C'(0,0)| = o00). Phase transition: 3 p. = p.(d, L) € (0,1) s.t.

O(p) =0 ifp < p.,
O(p) >0 ifp> pe.

ezuidenhout—Grimmett (1990) proved 6(p.) = O.

ur for p = p. well understood for d > 4 (when L > 1).



Oriented percolation: r-point functions

e r-point functions (7 > 2) are given by:
r) = Ty (T )

= IP((O, 0) — (z1,m1),...,(0,0) — (x,_1, nr_l)).
ransforms are

POk = > (@™

erd(r—l)
function 7 = 7 obeys

0) = 3 EI[(0,0) — (z,n)] = E|C(0,0) N (2 x {n})]

xGZd

~ rA. . 0 (p < pe)
£0(0; p) { 0bse



The two-point function: Results

der Hofstad — S 2003 Let d > 4, p = p., § € (0,1 A E2).
, L), D(d, L), C;(d) such that for L. > L we have

N k —k2/2d k2 1
() = e 14 0(5) + 0|

C,L %~ d/2 < Sup m(x) < CyL ™ %n —d/2,

roved previously by Nguyen and Yang (1995), with a weaker error estimate.
ferent and also yields the second line.

ber of sites in cluster of origin at time n).



The r-point functions: Results

—k2t/2d

der Hofstad — S 2003 Letd > 4, p = p., 0 € (0,1 /\%), t; € (0, 00).
h that for L > L we have

—

k 3 t1N\to X ) ) 1
D:n> = ’n,VA |:/(; pS(kl —|_ k‘2)pt1_5(k1)pt2_s(k2) ds _|_ O(_TL_5):|

result for all r-point functions, r > 4 (convergence to super-Brownian

; 4
; (b) 42 (c) L b



Notation

(x,n) =x

Tn(z) = ()

T)(x) = Z o(y)r(z —y) = Z Z Tm(Y)Tn—m(x — y)



Lace expansion for two-point function

ration, and its schematic representation as a “string of sausages.”
onsists of the pivotal bonds.

sion is an inclusion-exclusion expansion in which the “sausages” are treated
, to leading order.



Lace expansion for two-point function

ercolation, 3 three different versions of the expansion for the two-point

Nguyen—Yang, (iii) Sakai.
e following:

= x)+P0— x, 0 A x)

= x) + Z P(0 = w and (u, v) is occupied and pivotal for 0 — @)

(u,v)

= x) + Z PO = u)m(v —u)t(x —v) — R(x).

(u,v)

) = 8oz + 7 (). For @ # 0,

) = 7 Y(@) + (11« ) () + (7' % 7« 7)(2) — R(z).



Lace expansion for two-point function

| =,

1e remainder term. The heavy and light lines correspond to percolation
n distinct copies of the same lattice.
1sion gives

() = 7(xe) + (r1*7)(®) + (7w *x 71 % 7) (),

O(e) — V() + 7P (x) — - - -



Induction

on as:

@) Ta(e = )+ (@) + 30D mn ()70 = W) T (7 )

m=2 u,v
r transform:
= #1(k) (k) + Fng1(k) + 71(k) Y fom (k) Fm (k). (*)
m=2

bution to 7, is 7'('7(72) and, by the BK inequality,

> _P((0,0) = (z,m)e™ | <> (@)’ < ITmlloolITmlls < [[Fmll17m(0).

X x

tive approach to recursions like (*) is given in van der Hofstad — S '02, and
nclusion that 7,,(k/+/n) behaves like a Gaussian, if d > 4 and L > 1.



ritical branching process vs oriented percolation

Difference: multiple occupancy for branching process
VS
single occupancy for oriented percolation.

noticeable until two oriented percolation paths join, e.g., (0,0) = (z, n).
> Lo,n > 1,

> " Pp((0,0) = (z,n)) < CL n~ %2,
xEZd

> n Y PB((0,0) = (z,n) <CL ™
n=1 gzezd
1e effect of closed loops is small when d > 4, and the difference is small.




General r-point functions

ticated expansion shows that the general r-point function, which can be
3 “tree of sausages,” asymptotically decomposes into a product of two-point
a vertex factor V' at each branch point.



The survival probability

(3 € Z7: (0,0) — (z,n)) =P, (0 — n).
wiour of 0,,(p) as n — oco? Clearly 6,,(p) | 6(p) as n T,
(exponentially fast) for p < p., and 8,,(p) — 6(p) > 0 for p > p..

ation at p., 0,(p.) — 0 as n — oo. In what manner?

(pe) ~=nHP,

'ton—Watson branching process with offspring distribution having mean 1
2
' é 2
" e
eld value of p is 1.



The survival probability: main result

ability: Define

Abn(p) = 0On(p) — Ont1(p)
= Py((0,0) — 1, (0,0) 1+ 1).

der Hofstad — den Hollander — S 2007. For d > 4, 3 Ly(d) such that, for
— 00,

. —1 —d
A0u(pe) = = [1 + O "logn) + L 0(5n)]
[ n @D 20gn (4 < d<6)
o =4 nllog®n (d = 6)
| n"'logn (d > 6),
— 00,

=" Ab,(p.) = Ai\/n [1 +O(n Mogn) + L—dO(an)} .

m=n



The survival probability: constants

2

P ™ A

A,V are those seen before. In particular,

S 7al@) = A[L + o(1)],

xGZd

Mg (T1, T2) = A3V(n1 A n2)[l + o(1)] as ni A ng — 00,

OL % and V=14 0(L%) as L — oo.



Survival is rare but vigorous when it occurs

rd > 4 and L > Ly(d), conditional on survival to time n, n~ !N,
ly to an exponential random variable with parameter A = 2/(A*V).

> 1,
(n_an)l|Nn>O] = 7}1—{20—_ Z P((0,0) — (y;,m))
Y-
. AVn 1 ~(1 —
= lim lé,fl,L(O)
= (A*V)l27'.

that E[N,,] = >__7n,(x) — A can now be understood to correspond to
ents

2 A%V

clusters rarely survive to time n, but when they do, they are large.



urvival probability for critical branching process

cal branching process with offspring distribution ¢,,, such that:

X0 oo
— ) 2 ) A
 _ mg, =1, variance 0" = E m(m — 1)q,,, survival prob. 6,,.

m=0

e

1 number of offspring of initial particle that survive to time n + 1 leads to:

A A

o’ s 43
0n+1 — Uy — -Q—Qn —|— O(Qn)
,, 50 that ¥,11 = O, + 207 + O(9, ).

that 9, = 30°n + O(logn), so that



Survival probability for oriented percolation

ace expansion for survival probability (a point-to-plane expansion) gives

n—1 [n/2] n
= Z TmPOn—1-m — Z Z By ymgOn—mqOn—my + €n,
m=0

m1=1mo=mq

ygrammatic estimates are proved for 7,,, ®mq,mqy and ey, valid for p = p.
~ 1),d>4and L > Ly(d), e.g.,

=0, |7tm| < CrL™m™? (m > 2), and p. 3°°_ 7t = 1.
+ O(L™ )] and
'¢L_dm1_(d_2)/2(m2 — 'm,l)_(d_Q)/2 (me > mq > 1, mi1 +meo > 3).

s then analysed via induction, with induction hypothesis on v; = 1/6;.



The incipient infinite cluster

1e [IC is a natural measure P, such that P (|C(0,0)| = c0) = 1.
ict I1C on a tree: Kesten, Barlow-Kumagai.

percolation constructed by Kesten for d = 2:
0 — 0B} at p. and let n — oo,
{0 — oo} atp > pcandlet p | pe.

ther constructions for d = 2.

d — Jarai: construction of IIC for d > 6 (spread-out model).



The IIC for oriented percolation

Dpc((O’ O) - (33’ n)) and 7, = Zaz ’Tn(.CC) Let

Bu(E) = — 3 B(E N {(0,0) — (z,m)}),

Qu(E) = Pp(E | (0,0) — n).

1-dH-S 02,07. Ford > 4, p = p., L > Lo(d),

lim P,(FE) exists, Qu(F) = lim Q,(F) exists,

'— OO

| — o0) = 1.

Q
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Idea of proof of existence of P,

1
Pu(B) = — 5 P(EN{(0,0) — (z,m)}),
" zezd
ruration contributing to E N {(0,0) — (x,n)} as a “string of sausages:”

L n
m
2
0
0

, 1.e., E/ depends only on bonds below level m.



Idea of proof of existence of P,

e lace expansion, which to leading order treats as independent the sausages
/e m, gIVes

n—1

Bu(E) = — | - @i(B)mu i+ ou(E)

l=m

< C(l—m+ 1)_(d_2)/2 (for d > 4, L large). Can then take limit to get

Po(E) =D @u(E) (E € &n).

L n
m
E@
5 0

o is similar but uses asymptotics of survival probability.



Geometry of 1IC

N, = #{y € 2z% : (0,0) — (y,n)}. Under P, n~'N,, converges
e-biased exponential random variable (density A*ze %) with parameter
).

- computation of moments as before.

et B, = >, N, Under P, n~?B, converges weakly to a
random variable.

Oow.

is 4-dimensional: Under P, (in fact more can be said)

c1R' < Eo[#{(y,m) € C(0,0) : |y| < R}] < eaR™.
s of the IIC two-point function

n—oo T,

() = Pool((0,0) = (y,m)) = lim — 57 (1),



