Random walks and the lace expansion II

Gordon Slade University of British Columbia

Durham: July, 2007

Abstract

e an introduction to the lace expansion with emphasis on recent to:

neration of self-avoiding walks, and

lysis of random walks on the incipient infinite cluster for oriented

s at http://www.math.ubc.ca/~slade.

n supported in part by NSERC.

Spread-out oriented percolation

on on the directed graph with vertices (x,n), $x\in\mathbb{Z}^d$, $n=0,1,2,\ldots$ and ((x,n),(y,n+1)) with $\|x-y\|\leq L$ (later: L large).

pendently "occupied" with probability p and otherwise "vacant."

$$p = 0.7 > p_c \approx 0.645$$

Oriented percolation has a helpful Markov property.

Phase transition for oriented percolation

 $(x,0) \longrightarrow (x,n)$ if there is an occupied oriented path from (0,0) to (x,n) ,

$$C(0,0) = \{(x,n) : (0,0) \longrightarrow (x,n)\}.$$

 $(|C(0,0)| = \infty)$. Phase transition: $\exists p_c = p_c(d,L) \in (0,1)$ s.t.

$$\theta(p) = 0 \quad \text{if } p < p_c,$$

$$\theta(p) > 0$$
 if $p > p_c$.

ezuidenhout–Grimmett (1990) proved $heta(p_c)=0$.

our for $ppprox p_c$ well understood for d>4 (when $L\gg 1$).

Oriented percolation: r-point functions

he r-point functions $(r\geq 2)$ are given by:

$$\vec{x}$$
) = $\tau_{n_1,...,n_{r-1}}^{(r)}(x_1,...,x_{r-1})$
= $\mathbb{P}\Big((0,0) \to (x_1,n_1),...,(0,0) \to (x_{r-1},n_{r-1})\Big).$

ransforms are

$$\hat{\tau}_{\vec{n}}^{(r)}(\vec{k}) = \sum_{\vec{x} \in \mathbb{Z}^{d(r-1)}} \tau_{\vec{n}}^{(r)}(\vec{x}) e^{i\vec{k}\cdot\vec{x}}.$$

function $au= au^{(2)}$ obeys

$$0) = \sum_{x \in \mathbb{Z}^d} \mathbb{E}I[(0,0) \to (x,n)] = \mathbb{E}|C(0,0) \cap (\mathbb{Z}^d \times \{n\})|$$

$$\hat{\tau}_n(0;p) \to \left\{ egin{array}{ll} 0 & (p < p_c) \\ \infty & (p > p_c). \end{array} \right.$$

The two-point function: Results

der Hofstad – S 2003 Let d>4, $p=p_c$, $\delta\in(0,1\wedge\frac{d-4}{2})$. ,L), D(d,L), $C_i(d)$ such that for $L\geq L_0$ we have

$$\hat{\tau}_n\left(\frac{k}{\sqrt{Dn}}\right) = Ae^{-k^2/2d} \left[1 + O\left(\frac{k^2}{n^{\delta}}\right) + O\left(\frac{1}{n^{(d-4)/2}}\right) \right]$$

$$C_1 L^{-d} n^{-d/2} \le \sup_x \tau_n(x) \le C_2 L^{-d} n^{-d/2}.$$

roved previously by Nguyen and Yang (1995), with a weaker error estimate. fferent and also yields the second line.

$$\mathbf{m}_{n\to\infty}\,\hat{\tau}_n(0) = A$$

ber of sites in cluster of origin at time n).

The r-point functions: Results

$$-k^2t/2d$$

der Hofstad – S 2003 Let d>4, $p=p_c$, $\delta\in(0,1\wedge\frac{d-4}{2})$, $t_i\in(0,\infty)$. The that for $L\geq L_0$ we have

$$\frac{\vec{k}}{\overline{Dn}} = nVA^3 \left[\int_0^{t_1 \wedge t_2} \hat{p}_s(k_1 + k_2) \hat{p}_{t_1 - s}(k_1) \hat{p}_{t_2 - s}(k_2) \, ds + O\left(\frac{1}{n^{\delta}}\right) \right]$$

result for all r-point functions, $r \geq 4$ (convergence to super-Brownian

Notation

$$(x,n) = \boldsymbol{x}$$

$$\tau_n(x) = \tau(\boldsymbol{x})$$

$$au(oldsymbol{x}) = \sum_{oldsymbol{y}} \sigma(oldsymbol{y}) au(oldsymbol{x} - oldsymbol{y}) = \sum_{oldsymbol{y} \in \mathbb{Z}^d} \sum_{m=0}^n \sigma_m(oldsymbol{y}) au_{n-m}(oldsymbol{x} - oldsymbol{y})$$

Lace expansion for two-point function

rration, and its schematic representation as a "string of sausages."

onsists of the pivotal bonds.

sion is an inclusion-exclusion expansion in which the "sausages" are treated , to leading order.

Lace expansion for two-point function

ercolation, \exists three different versions of the expansion for the two-point

Nguyen-Yang, (iii) Sakai.

e following:

$$\Rightarrow oldsymbol{x}) + \mathbb{P}(0
ightarrow oldsymbol{x}, \ oldsymbol{0}
ot \Rightarrow oldsymbol{x})$$

$$\Rightarrow m{x}) + \sum_{(m{u},m{v})} \mathbb{P}(m{0} \Rightarrow m{u} \ ext{and} \ (m{u},m{v}) \ ext{is occupied and pivotal for} \ m{0} o m{x})$$

$$\Rightarrow \boldsymbol{x}) + \sum_{(\boldsymbol{u}, \boldsymbol{v})} \mathbb{P}(\boldsymbol{0} \Rightarrow \boldsymbol{u}) \tau_1(\boldsymbol{v} - \boldsymbol{u}) \tau(\boldsymbol{x} - \boldsymbol{v}) - R(\boldsymbol{x}).$$

$$(oldsymbol{x}) = \delta_{oldsymbol{0},oldsymbol{x}} + \pi^{(0)}(oldsymbol{x}).$$
 For $oldsymbol{x}
eq oldsymbol{0}$,

$$(m{x}) = \pi^{(0)}(m{x}) + (au_1 * au)(m{x}) + (\pi^{(0)} * au_1 * au)(m{x}) - R(m{x}).$$

Lace expansion for two-point function

ne remainder term. The heavy and light lines correspond to percolation on distinct copies of the same lattice.

Insign gives

$$au(m{x}) = \pi(m{x}) + (au_1 * au)(m{x}) + (\pi * au_1 * au)(m{x}),$$

$$\pi^{(0)}({m x}) - \pi^{(1)}({m x}) + \pi^{(2)}({m x}) - \cdots$$

Induction

ion as:

$$\int \tau_1(y)\tau_n(x-y) + \pi_{n+1}(x) + \sum_{m=2}^n \sum_{u,v} \pi_m(u)\tau_1(v-u)\tau_{n-m}(x-v)$$

er transform:

$$= \hat{\tau}_1(k)\hat{\tau}_n(k) + \hat{\pi}_{n+1}(k) + \hat{\tau}_1(k)\sum_{m=2}^n \hat{\pi}_m(k)\hat{\tau}_{n-m}(k). \tag{*}$$

bution to π_m is $\pi_m^{(0)}$ and, by the BK inequality,

$$\sum_{x} \mathbb{P}((0,0) \Rightarrow (x,m)) e^{ik \cdot x} \le \sum_{x} \tau_{m}(x)^{2} \le ||\tau_{m}||_{\infty} ||\tau_{m}||_{1} \le ||\hat{\tau}_{m}||_{1} \hat{\tau}_{m}(0).$$

ctive approach to recursions like (*) is given in van der Hofstad – S '02, and nclusion that $\hat{ au}_n(k/\sqrt{n})$ behaves like a Gaussian, if d>4 and $L\gg 1$.

ritical branching process vs oriented percolation

Difference: multiple occupancy for branching process vs

single occupancy for oriented percolation.

noticeable until two oriented percolation paths join, e.g., $(0,0)\Rightarrow (x,n)$.

$$\geq L_0$$
, $n \geq 1$,

$$\sum_{x \in \mathbb{Z}^d} \mathbb{P}_{p_c}((0,0) \Rightarrow (x,n)) \le CL^{-d}n^{-d/2},$$

$$\sum_{n=1}^{\infty} n \sum_{x \in \mathbb{Z}^d} \mathbb{P}_{p_c}((0,0) \Rightarrow (x,n)) \le CL^{-d}.$$

ne effect of closed loops is small when d>4, and the difference is small.

General r-point functions

ticated expansion shows that the general r-point function, which can be "tree of sausages," asymptotically decomposes into a product of two-point a vertex factor V at each branch point.

The survival probability

$$\mathbb{P}_p(\exists x \in \mathbb{Z}^d : (0,0) \to (x,n)) \equiv \mathbb{P}_p(\mathbf{0} \to n).$$

aviour of $heta_n(p)$ as $n o\infty$? Clearly $heta_n(p)\downarrow heta(p)$ as $n\uparrow$,

(exponentially fast) for $p < p_c$, and $\theta_n(p) \to \theta(p) > 0$ for $p > p_c$.

lation at p_c , $heta_n(p_c) o 0$ as $n o \infty$. In what manner?

$$n_i(p_c) pprox n^{-1/
ho}$$
.

Iton–Watson branching process with offspring distribution having mean $oldsymbol{1}$

$$\hat{\theta}_n \sim \frac{2}{\sigma^2 n}.$$

eld value of ho is 1.

The survival probability: main result

ability: Define

$$\Delta \theta_n(p) = \theta_n(p) - \theta_{n+1}(p)$$
$$= \mathbb{P}_p((0,0) \to n, (0,0) \not\to n+1).$$

der Hofstad – den Hollander – S 2007. For d>4, $\exists L_0(d)$ such that, for $\to \infty$,

$$\Delta \theta_n(p_c) = \frac{2}{AVn^2} \left[1 + O(n^{-1}\log n) + L^{-d}O(\delta_n) \right]$$

$$\delta_n = \begin{cases} n^{-(d-4)/2} \log n & (4 < d < 6) \\ n^{-1} \log^2 n & (d = 6) \\ n^{-1} \log n & (d > 6), \end{cases}$$

$$ightarrow \infty$$
 ,

$$=\sum_{n=0}^{\infty}\Delta heta_m(p_c)=rac{2}{AVn}\left[1+O(n^{-1}\log n)+L^{-d}O(\delta_n)
ight].$$

The survival probability: constants

$$heta_n(p_c) \sim rac{2}{AVn}$$

A,V are those seen before. In particular,

$$\sum_{x \in \mathbb{Z}^d} \tau_n(x) = A[1 + o(1)],$$

$$au_{n_1,n_2}(x_1,x_2) = A^3 V(n_1 \wedge n_2)[1+o(1)]$$
 as $n_1 \wedge n_2 \to \infty$,

$$O(L^{-d})$$
 and $V=1+O(L^{-d})$ as $L o \infty$.

Survival is rare but vigorous when it occurs

or d>4 and $L\geq L_0(d)$, conditional on survival to time n, $n^{-1}N_n$ sly to an exponential random variable with parameter $\lambda=2/(A^2V)$.

$$egin{align} &(n^{-1}N_n)^l | N_n > 0] &= & \lim_{n o \infty} rac{1}{ heta_n} rac{1}{n^l} \sum_{y_1, \dots, y_l} \mathbb{P}((0, 0) o (y_j, n)) \ &= & \lim_{n o \infty} rac{AVn}{2} rac{1}{n^l} \hat{ au}_{n, \dots, n}^{(l+1)} (ec{0}) \ &= & (A^2V)^l 2^{-l} l!. \end{split}$$

that $\mathbb{E}[N_n] = \sum_x au_n(x) o A$ can now be understood to correspond to ents

$$\mathbb{P}(N_n > 0) \sim \frac{2}{AVn}, \qquad \mathbb{E}[N_n|N_n > 0] \sim \frac{A^2V}{2}n.$$

clusters rarely survive to time n, but when they do, they are large.

urvival probability for critical branching process

cal branching process with offspring distribution q_m such that:

$$\sum_{m=0}^\infty mq_m=1,$$
 variance $\sigma^2=\sum_{m=0}^\infty m(m-1)q_m,$ survival prob. $\hat{ heta}_n.$

n number of offspring of initial particle that survive to time n+1 leads to:

$$\hat{\theta}_{n+1} = \hat{\theta}_n - \frac{\sigma^2}{2}\hat{\theta}_n^2 + O(\hat{\theta}_n^3).$$

, so that
$$\hat{v}_{n+1}=\hat{v}_n+rac{1}{2}\sigma^2+O(\hat{v}_n^{-1})$$
 .

that $\hat{v}_n = rac{1}{2}\sigma^2 n + O(\log n)$, so that

$$\hat{\theta}_n = \frac{2}{\sigma^2 n} [1 + O(n^{-1} \log n)].$$

Survival probability for oriented percolation

ace expansion for survival probability (a point-to-plane expansion) gives

$$=\sum_{m=0}^{n-1} \pi_m p \theta_{n-1-m} - \sum_{m_1=1}^{\lfloor n/2 \rfloor} \sum_{m_2=m_1}^n \phi_{m_1,m_2} \theta_{n-m_1} \theta_{n-m_2} + e_n,$$

agrammatic estimates are proved for π_m , ϕ_{m_1,m_2} and e_n , valid for $p=p_c\sim 1$), d>4 and $L\geq L_0(d)$, e.g.,

$$c=0$$
, $|\pi_m|\leq C_\pi L^{-d}m^{-d/2}$ $(m\geq 2)$, and $p_c\sum_{m=0}^\infty\pi_m=1$.

$$+ O(L^{-d})]$$
 and

$$(m_0 L^{-d} m_1^{-(d-2)/2} (m_2 - m_1)^{-(d-2)/2} \quad (m_2 \ge m_1 \ge 1, \,\, m_1 + m_2 \ge 3).$$

s then analysed via induction, with induction hypothesis on $v_j=1/ heta_j.$

The incipient infinite cluster

he IIC is a natural measure \mathbb{P}_∞ such that $\mathbb{P}_\infty(|C(0,0)|=\infty)=1$.

ıct IIC on a tree: Kesten, Barlow-Kumagai.

percolation constructed by Kesten for d=2:

$$0 o \partial B_n \}$$
 at p_c and let $n o \infty$,

$$\{0 o \infty\}$$
 at $p > p_c$ and let $p \downarrow p_c$.

ther constructions for d=2.

d – Járai: construction of IIC for d>6 (spread-out model).

The IIC for oriented percolation

$$\mathbb{P}_{p_c}((0,0) o (x,n)) ext{ and } au_n=\sum_x au_n(x).$$
 Let $\mathbb{P}_n(E)=rac{1}{ au_n}\sum_x \mathbb{P}(E\cap\{(0,0) o (x,n)\}),$ $\mathbb{Q}_n(E)=\mathbb{P}_{p_c}(E\mid (0,0) o n).$

H-dH-S 02,07. For d>4, $p=p_c$, $L\geq L_0(d)$,

$$\lim_{n o\infty}\mathbb{P}_n(E)$$
 exists, $\mathbb{Q}_\infty(E)=\lim_{n o\infty}\mathbb{Q}_n(E)$ exists, $\mathbb{Q}_\infty=\mathbb{P}_\infty,$

$$\rightarrow \infty) = 1.$$

Idea of proof of existence of \mathbb{P}_{∞}

$$\mathbb{P}_n(E) = \frac{1}{\tau_n} \sum_{x \in \mathbb{Z}^d} \mathbb{P}(E \cap \{(0,0) \to (x,n)\}).$$

guration contributing to $E\cap\{(0,0) o(x,n)\}$ as a "string of sausages:"

, i.e., E depends only on bonds below level m.

Idea of proof of existence of \mathbb{P}_{∞}

e lace expansion, which to leading order treats as independent the sausages we m, gives

$$\mathbb{P}_n(E) = \frac{1}{\tau_n} \left[\sum_{l=m}^{n-1} \varphi_l(E) \tau_{n-l-1} + \varphi_n(E) \right]$$

 $\leq C(l-m+1)^{-(d-2)/2}$ (for d>4, L large). Can then take limit to get

$$\mathbb{P}_{\infty}(E) = \sum_{l=m}^{\infty} \varphi_l(E) \quad (E \in \mathcal{E}_m).$$

 $_{\infty}$ is similar but uses asymptotics of survival probability.

Geometry of IIC

 $N_n=\#\{y\in\mathbb{Z}^d:(0,0) o (y,n)\}$. Under \mathbb{P}_∞ , $n^{-1}N_n$ converges ze-biased exponential random variable (density $\lambda^2xe^{-\lambda x}$) with parameter N_n .

computation of moments as before.

Let $B_n = \sum_{m=0}^n N_n$. Under \mathbb{P}_∞ , $n^{-2}B_n$ converges weakly to a random variable.

OW.

is 4-dimensional: Under \mathbb{P}_{∞} , (in fact more can be said)

$$c_1 R^4 \le \mathbb{E}_{\infty} [\#\{(y,m) \in C(0,0) : |y| \le R\}] \le c_2 R^4.$$

s of the IIC two-point function

$$m(y) = \mathbb{P}_{\infty}((0,0) \to (y,m)) = \lim_{n \to \infty} \frac{1}{\tau_n} \sum_{x} \tau_{n,m}^{(3)}(x,y).$$