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Maximal supergravities:

@ are very nontrivial classical field theories

* 32 supersymmetries

e combine gravity, gauge fields with non-abelian
extensions, scalar fields and a variety of
antisymmetric tensor fields

non-trivial duality symmetries
improved short distance behaviour

@ they could be well defined and consistent

@ or are they (necessarily) part of a bigger theory ?

M ?




Definition of M-Theory

| |-dimensional supergravity
toroidal compactifications thereof with £, (,,)(Z)
+ Kaluza-Klein states (1/2-BPS)

+ branes + etcetera
what about |IB theory
Matrix theory

Membrane theory

We start from the (effective) field theory
perspective with 32 supersymmetries




D=I11 SUGRA

— 1IB SUGRA

central charges D=9 (2,1) & (1,1)

massless
states

U duality
1 invariant / KK states

v

incomplete incomplete with respect to U duality




11D - lIA - [IB PERSPECTIVE

-

I IA momentum

KKA

[IB winding

[ IB momentum

lIA winding

(9 space-time dimensions)

KK states + DO branes
(2,1)
strings + D1 branes

implied by U duality

(1,1)
strings T

KK states

9D SUGRA contains 2+1| gauge fields < central charges

Supergravity / supermembrane perspective ?

Schwarz, 1996
Aspinwall, 1996

Abou-Zeid, dWV, Lust, Nicolai, 1999-2001




11D - SUPERMEMBRANE PERSPECTIVE

KKA 11D momentum KK states

KKB Supermembrane wrapped on 7"

DICHOTOMIC FIELD THEORY

9D SUGRA coupled to KK states of both
11D SUGRA and IIB SUGRA

indication of higher-dimensional origin (without full decompactification)
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more generally:

SUPERSYMMETRY ANTI-COMMUTATOR

CENTRAL CHARGES (pointlike)

SL(2) x SO(1,1)  SO(2)
SL(3) x SL(2)

E4(4) = SL(5)

Es55) = SO(5,5) 16 — (4,4)
Es6) 271

E77) 56 — 28 O 28
Eg(s) 120

Eqg(9) 161204 135

N W = Ot O N 0o ©

compare to vector fields!




CENTRAL CHARGES (stringlike)

(3,1)

5

1001 — (5,1)@(1,5) @ (1,1)
27

63

135

135

9
8
7
6
D
4
3
2

compare to tensor fields!




GAUGINGS

class of deformations of maximal supergravities

gauging versus scalar-vector-tensor duality

first: 3 space-time dimensions

|28 scalars and 128 spinors, but no vectors !
obtained by dualizing vectors in order to realize the symmetry Eg(g) (R)

solution:
introduce 248 vector gauge fields with Chern-Simons terms

1
Los x g AMOn 0,4, = 29 frg™ 4,7 4,9

EMBEDDING TENSOR

‘invisible’ at the level of the toroidal truncation
Nicolai, Samtleben, 2000




another example: 5 space-time dimensions

47 scalars and 27 vectors, and no tensors !

in order to realize the symmetry Egi(%i)d x USp(8)'oc?,

introduce a local subgroup such as  Egg) — SO(6)'°° x SL(2)

inconsistent! Gunaydin, Romans, Warner, 1986
vectors decompose according to: 27 — (15,1) 4+ (6,2)

charged vector fields Y
must be (re)converted to tensor fields !

gauge group encoded into the EMBEDDING TENSOR O/

wa= treated as spurionic order parameter € Eg(g)

= probes new M-theory degrees of freedom

Xpm =0Op% 1,
gauge group generators 4—' |—} E6(6) generators




The embedding tensor is subject to constraints !

® closure: [Xa, Xyl = fun® Xp

On’ ON" f53, = fun’ Op® = — Oy  tgn Op”

L XMNP €E6(6)
(X, Xn] = —Xunt Xp

. contains the gauge group structure constants, but is
XMN not symmetric in lower indices, unless contracted
with the embedding tensor !!!!

@ supersymmetry: Oy~ € 351

— 27 x 78 = 2X+ 351 + LB

(351 x 351), = X + DFB + 351’ + 7722 + 17550 + 34398

(closure)

dW, Samtleben, Trigiante, 2005




EMBEDDING TENSORS FOR D = 3,4,5,6,7

SL(5) 10 x 24 =10 + 15 + 40 + 175
SO(5,5) 16 x 45 = 16 + 144 + 560

Ee(s) 27 x 78 = 27 + 351 + 1728

Er(7) 56 x 133 = 56 + 912 + 6480

Eg(s) 248 x 248 = 1 + 248 + 3875 + 27000 -+ 30380

dW, Samtleben, Trigiante, 2002
® characterize all possible gaugings

® group-theoretical classification
@ universal Lagrangians

applications in D = 2,3,4,5,7 space-time dimensions
in D=4, for N = 2,4,8 supergravities
in D=3,for N =1,...,6,8,9,10,12,16 supergravities

de Vroome, dWV, Herger, Nicolal, Samtleben, Schon, Trigiante, Weidner




digression:
consider the representations appearing in (27 x 27); = (27 + 351')

X(MN)P = dI,MN ARL dvNT E6(6) invariant tensor(s)

27
XU

two possible representations can be associated with the new index {

27 x (27 x 27), = 851 + 27 + 27 + 351 + 1728 + 7722

indeed: (27 x 27), =351 ——> X(MN)P:dMNQZPQ

from the closure constraint:

ZMN QN =0 — ZMN Xy =0  orthogonality

Xunt 29N = gauge invariant tensor

this structure is generic (at least, for the groups of interest)
and we will exploit it later !




rather than converting and tensors into vectors and reconverting
some of them them when a gauging is switched on, we introduce
both vectors and tensors from the start, transforming into the
representations 27 and 27, respectively

extra gauge invariance

SAM —

n

}—,W/M — 8MAVM _ 61/AMM s gX[NP]M AHNAVP not fully covariant

introduce fully covariant field strength  H,, ™ = F,, " +9ZMY B, n

to compensate for lack of closure:

SBuwm = 20,En —9XpNC AL Eu0 +9ZYN AP Xpn® B g
— g <2 drvipg Ay — 9 Xrm' dposAp” AV]S)AQ

because of the extra gauge invariance, the degrees of
freedom remain unchanged

upon switching on the gauging there will be a balanced
decomposition of vector and tensor fields




Universal invariant Lagrangian containing
kinetic terms for the tensor fields combined with a
Chern-Simons term for the vector fields

1 1
Lyt = §i5MVpUT{gZMNBuVM [DpBJTN + 4dNPQ App (aJATQ + §gX[RS]Q AO'R ATS)i|

- ngNP A4, 0,4, 0,4,7

+ Zg Xigr™ A AC A" (8“ATP " %QX[ST]PA"SATT)} }

this term is present for ALL gaugings
there is no other restriction than the constraints on

the embedding tensor
dW, Samtleben, Trigiante, 2005

Can this be generalized?




Non=-abelian vector=-tensor hierarchies

Generalize the combined gauge algebra

0@ algebra closes on O34, — non-closure
SAM =0, A" — g Xipg™ AT AC —gZM =,
5B,uu[ = 2D[MEV]I -+ .-

e \—

0@ algebra closes on ZM’IBWI — non-closure

0Buwr =2D, =21+ — gYrin’ ®,, M
with Z"!'Yin"' =0 — Yin? =Xur? +2drun 207
53/“/ij = 3D[/L®Up]IM -+ .-

0@ algebra closes on Y7pr? S,

etcetera dW. Samtleben, 2005




explicit results are complicated:

1
Hyvpr = 3 [D[MBVP] 1 +2dr,mN A[uM(avAp]N T §9X[PQ]NAVPAP]Q)}

+gYIMJS,quIM

55,uup IM — gANXNIJ S,u,l/pJM _ gANXNPM S,ul/pIP
+3Dy,®, M +3A,M D, +30,4." 2,1

— 29 d],Np ZP’JA[MMAVNEP]J

+4dr np AM A[MN] az/Ap]P +29 X1’ d.j,pQ A¢ A[MMAVNAP]P

Plumbing strategy: repair the lack of closure iteratively
by introducing tensor gauge fields of increasing rank

M — M
A =l (I),uu[

encoded by the embedding tensor !




Leads to :

rank — 2 4 5

SL(5) 5 10 24

SO(5,5) 16 10 45 144

Egye) 27 27 351 27 + 1728

Ers7ry 56 133 912 133 + 8165

Egrs) |248| 3875 3875+ 147250

Striking feature:

rank D-2 : adjoint representation of the duality group

dW, Samtleben, Nicolal, work in progress




rank — 4 5

SL(5) 10 24

SO(5,5) 16 45 144

Egye) 27 27 78 351 27 + 1728

Ers7y 56 133 912 133 + 8165

Egrg) 248 |3875| 3875+ 147250

Striking feature:

rank D-7 : embedding tensor




rank — 9

4

5

SL(5) 5
SO(5,5) 16 10
Borey 27 27
Eron 56 133

Esy1s) 248 3875

16
78

912

10

45

351

24

144

27 + 1728

133 + 8165

3875 + 147250

Striking feature:

rank D : closure constraint on the embedding tensor




rank — 4 5

SL(5) 10 24

SO(5,5) 10 45 144

Eo(+6) 27 351 27 + 1728

Er+7) 133 912 133 + 8165

Egrg) 248 3875 3875+ 147250

Perhaps most striking:

implicit connection between space-time Hodge duality

and the U-duality group
O dial

Probes new states in M-Theory!




Implications:

1 4 5

SL(5) 10 24
SO(5,5) 16 10 45 144
Eore) 27 27 351 27 + 1728
E;47y 56 133 912 133 + 8165

Fgrg) 248 3875 3875+ 147250

The table coincides substantially with results based on several
rather different conceptual starting points:

M(atrix)- Theory compactified on a torus: duality representations of states

Correspondence between toroidal compactifications of M-Theory
and del Pezzo surfaces

E11 decompositions




e Algebraic Aspects of Matrix Theory on T¢

Elitzur, Giveon, Kutasov, Rabinovici, 1997

Based on the correspondence between super-Yang-Mills on 7
and M-Theory on Td, a rectangular torus with radii 71, Ro, ..., Ry

in the infinite-momentum frame.

Invariance group consist of permutations of the R;
combined with the T-duality relations (7 # j # k) :

lI?; N llg) ZI?; l3

> R. — >
R, Ry RiR; R.R,

generate a group isomorphic with the Weyl group of Eg; )

The explicit duality multiplets arise as representations of
this group.




Example d=3:

1
3 KK states on T“ M

TR
R; Ry,
z

3 2-brane states wrapped on T M

2 j#Fk
p
Ri1R;
3 2-brane states wrapped on 7% x ' M ~ 1;,)
p

the dimensions of these two multiplets coincide with the multiplets
presented previously for the scalar and vector central charges.

for higher d the multiplets are sometimes incomplete, because
they are not generated as a single orbit by the Weyl group.




! !

gauging gauging




® A Mysterious Duality lgbal, Neitzke, Vafa, 200 |

This cannot be a coincidence!

It is important to uncover the physical interpretation of these
duality relations. One possibility is that the del Pezzo surface is
the moduli space of some probe in M-Theory. It must be a
U-duality invariant probe

Such probe is the gauging encoded in the embedding tensor!

® E11 decomposition

Based on the conjecture that E11 is the underlying symmetry
of M-Theory. Decomposing the relevant E11 representation to
dimensions D<11 yields representations that substantially
overlap with those generated for the gaugings.

West et. al., 2001-2007
Bergshoeff et. al.,2005-2007




Conclusions

4 Gaugings probe new degrees of freedom of M-Theory

4 Maximal supergravity theories contain subtle
information about M-Theory.This may be interpreted as
an indication that supergravity needs to be extended
towards string/M-theory. This is also indicated by
comparing degrees of freedom originating from the
maximal theories in various dimensions.

4 There are unexpected connections with other results
derived on the basis of rather different concepts

4 More work needs to be done on clarifying these connections

4 The group-theoretical properties of the tensor classification (in
particular the global structure of the table) needs to be clarified







