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The Big Picture

Given a directed acyclic graph G, two ways to describe a
Bayesian Network:
@ Parametrically (recursive factorization of joint distribution)
@ Conditional Independence Constraints

A probability density function f factorizes according to G if and
only if f satisfies the conditional independence statements
implied by G.

What happens when some of the random variables in the
Bayes Net are hidden? What constraints replace conditional
independence constraints?




Bayesian Networks

@ G directed acyclic graph (DAG)

e V(G)=[n:={1,2,...,n}

@ | — j € E(G) must satisfy i < j.

@ pa(i)=1{k | k—iec E(G)}

@ Joint density f(x) belongs to Bayes Net associated to G iff

n

f(x) = T ] i3 %a)

i=1

where fi(Xj|Xy,(7y) is the conditional density of X; given its
parents Xy (j)-



Gaussian Bayesian Networks

For Gaussian random variables, the parametrization:

n

f(X) = H fi(Xi’Xpa(i))

i=1
is equivalent to the linear parametrization

Xi= > NX+Z

Jjepa(i)

where Z; ~ N(vj,1)?) and \j € R .




The Trek Rule

@ Atrek from i to jis a simple path in G with no collider
Kk—m,[— m.

@ Every trek T has a topmost element top(T).

@ T(i,j) is set of all treks from i to j.

@ For each i € [n] get variance parameter a;.

@ For each edge k — Iin G get regression parameter A\g.

Proposition
X ~ N(u, X) in Bayes Net associated to G iff L satisfies:

oj= Y ammn || M

TeT(i)) k—leT

with Ay € R and aj = Var[X]] is restricted.




The trek rules gives a polynomial parametrization

n+1)

b RV(O x RE@ _, R("
(a,\)— X

Let
Mg C PD(n)

be the set of all covariance matrices that come from the Bayes
Net associated to G (roughly, the image of ¢g).

Definition
Let

le={peR[oj|1<i<j<n]|p(X)=0VEe Mg}

be the vanishing ideal of the Gaussian Bayesian network.




Example of the Trek Rule

Xi =2y, Xo = M2 Xy +2o, X3 = M3 Xi+2Z3, Xo = Moa Xo+AsuXs+2Z4

014 = 81 224 + @1 A13A34

024 = 8224 + 81 M2A13A34

034 = a3A34 + a1 A3 A1224
044 = a4

O12 = 81M2 013 = @113
023 = 81 M2M13
033 = as

o1 = a
022 = &
Ig is the complete intersection of a quadric and a cubic:

lg = (011023 — 013021, 012023034 + 013024023 + - - - ) .

le = ( |Z12,13l, [T123,234] )



Markov Properties of the DAG

Proposition (Moralization/d-separation)

Xall Xg|Xc holds for Bayes Net associated to G if and only if C
separates A and B in the moral graph (Ganausuc))™-

Is X1 _L|_X4|X3?

A probability density is in the Bayes Net model of G if and only
if it satisfies all Cl statements implied by G.




Conditional Independence is an Algebraic Condition

Proposition

If X ~ N (u,X) then Xa L Xg|X¢ if and only if all
(#C +1) x (#C + 1) minors of ¥ 4 ;¢ guc are zero.

For each DAG G get a conditional independence ideal

Clg = {(#C + 1) minors of s ,csuc : XallXg|Xc holds for G).

V(Clg) N PD(n) = V(Ig) N PD(n) = Mg




Is it always true that Clg = I5?

- Xo 1L X3| X1 and X LLXa|{ X2, X3}

lg = Clg = { |Z12,13, |Z123,234] )

Theorem (S-, 2007)
If T is a tree then I+ = Clr.




lg = Clg + (|Z13.45|)

Where do these extra determinantal constraints come from?

Why are they interesting?




Why Should We Care? Hidden Variables

@ Partition [n] = HU O.
@ H hidden variables, O observed variables.
@ Density of observed variables is just fo(xo).

Proposition

leo = {pPeRoj|ije O] : p(Xoo0)=0VL e Mg}
= IgNR[oj : i,je O

h'

I 1345 = (013, |Z13,45])



A Special Grading

Definition
H is upstream from O if there are no edges o0 — h such that

oc Oand H € h.

T

o)

Grading: degoj = (1, #({i} N O) + #({j} N O)).
Proposition (S-, 2007)

If H is upstream from O, I is homogenous with respect to the
upstream grading. In particular, every homogeneous
generating set of Ig contains a generating set of Ig o.




Consequences for Trees

Let T be a directed tree (no colliders i — k,j — k) and suppose
that O is the set of leaves of T. Jr = It o in this case.

For a directed tree Jr is generated by tetrad constraints:

Jr = <0‘,‘j0'k/ — Ojl0jk - {i, k} splits from {j, I}>

For tree above:
013024 — 014023



What Causes Extra Constraints? Tetrads and Beyond

Theorem (Spirtes, Glymour, Scheines)

A tetrad |Lj x| € Ig (i.e. is zero for every covariance matrix in
Mg) if and only if there is a choke point ¢ between {i, j} and
{k,I} in G.

c is NOT a choke point between {1,2} and {3,4}



Definition

Let A, B, C, and D be four subsets of V(G) (not necessarily
disjoint). We say that (C, D) t-separates A from B if every trek
from A to B passes through either a vertex in C on the A-side of
the trek, or a vertex in D on the B-side of the trek.

Proposition

A set C d-separates A from B in G if and only if there is a
partition C = Cy U C, such that (Cy, Cy) t-separates AU C from
Bu_C.




Theorem (S-Talaska)

The matrix ¥ 4 g has rank < d if and only if there are C, D C [n]
with #C + #D < d such that (C, D) t-separate A from B.

Proof.

@ Extend the parametrization to treks with loops.

@ |X 4| is a determinant of path polynomials. Devise a
variant of the Gessel-Viennot Theorem to expand |~ 4 g|
combinatorially.

@ Deduce that |>4 g| = 0 if and only if every trek system has
a sided crossing.

@ Apply Max-Flow-Min-Cut theorem to deduce a blocking
characterization.




We have |X13 45| € Ig because (0, {4}) t-separate {1,3} from

Could also be deduced from Cl statements {1,3}1.5|{2, 4}

{4,5}.

and {1,3}12.
712
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024
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015
025
035
045



We have |X13 45| € Ig because (0, {4}) t-separate {1,3} from

Could also be deduced from Cl statements {1,3}1.5|{2, 4}

{4,5}.

and {1,3}12.
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(@

0:’

({c},{c}) t-separates A from B.
Y 5 g has rank at most 2.



Questions and Open Problems

@ Extend t-separation characterization of determinantal
constraints to ancestral graphs and summary graphs.

@ What does t-separation mean for general (non-Gaussian)

Bayesian networks?

@ How to determine general descriptions of other hidden
variable constraints?
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