
Symmetric iterative solvers for symmetric
saddle-point problems

Sue Dollar and Nick Gould

Durham 2008 – p.1/14



Nonlinear programming problems

Many methods for solution of

min
x∈Rn

F (x) subject to Ax = b, Cx ≥ 0

involve solving a sequence of equality programming problems of the form

min
p∈Rn

1

2
pT Hp + gT p subject to Ap = −d.

Karush-Kuhn-Tucker equations:
[

H AT

A 0

][

p

−λ

]

=

[

−g

−d

]

Durham 2008 – p.2/14



Nonlinear programming problems

Many methods for solution of

min
x∈Rn

F (x) subject to Ax = b, Cx ≥ 0

involve solving a sequence of equality programming problems of the form

min
p∈Rn

1

2
pT Hp + gT p subject to Ap = −d.

Karush-Kuhn-Tucker equations:
[

H AT

A 0

][

p

−λ

]

=

[

−g

−d

]

Durham 2008 – p.2/14



Methods for solving KKT system
2
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3
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2
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−d

3
5

Direct sparse methods

Black box
Inertia revealing
May have problems with very large problems

MINRES
Short-term recurrence
Symmetric and positive-definite preconditioner
Not inertia revealing

Projected PCG
Short-term recurrence
Inertia revealing

Uses constraint preconditioner
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Inertia revealing property

min
p∈Rn

1

2
pT Hp + gT p subject to Ap = −d. (EQP)
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Theorem (Gould 1985): Let A have full row rank and Z be such that AZ = 0 and rank(AT , Z) = n.

Then

(EQP) has a strong minimizer iff ZT HZ is positive definite;

(EQP) has weak minimizer if ZT HZ is positive semi-definite with ZT HZ singular and
equations consistent;

Otherwise, (EQP) has no finite solution.
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Theorem (Gould 1985): Let A have full row rank and Z be such that AZ = 0 and rank(AT , Z) = n.

Then

(EQP) has a strong minimizer iff ZT HZ is positive definite;

(EQP) has weak minimizer if ZT HZ is positive semi-definite with ZT HZ singular and
equations consistent;

Otherwise, (EQP) has no finite solution.

PPCG method derived by applying PCG to problem of form ZT HZpz = rz with preconditioner
ZT GZ
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min
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2
pT Hp + gT p subject to Ap = −d. (EQP)
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Theorem (Gould 1985): Let A have full row rank and n− and n0 be the number of negative and zero
eigenvalues of K. Then

(EQP) has a strong minimizer iff n− = m and n0 = 0;

(EQP) has weak minimizer iff n− = m, n0 > 0 and equation consistent;

Otherwise, (EQP) has no finite solution.
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Requirements

We would like to form an iterative method that
is a short-term recurrence scheme;
is inertia revealing;
performs similarly to MINRES.
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Can we build a basis Uj for the Krylov subspace

Kj (K, r0) = span
˘
r0, Kr0, K2r0, . . . , Kjr0

¯

such that UT
j KUj is block diagonal with 1x1 and 2x2 blocks?
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Lanczos method
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Forms basis Qj of Kj(K, r0) such that

KQj − QjTj = γj+1qj+1eT
j+1,

where

Tj =

2
666666666664

δ0 γ1

γ1 δ1
. . .

. . .
. . .

. . .
. . . δj−1 γj

γj δj

3
777777777775

= QT
j KQj .
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KQj − QjTj = γj+1qj+1eT
j+1,

where

Tj =

2
666666666664

δ0 γ1

γ1 δ1
. . .

. . .
. . .

. . .
. . . δj−1 γj

γj δj

3
777777777775

= QT
j KQj .

At each iteration, solve Tjvj = QT
j b and set yj = Qjvj .
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SYMMBK (Chandra 1978)

Using Bunch-Parlett (1971), factor Tj = LjDjLT
j , where Dj block diagonal with 1x1 and 2x2

blocks.
Dj = L−1

j QT
j KQjL−T

j = ST
j KSj

Vectors in Sj defined by short-term recurrence formula.
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Stability (Higham 1999): look ahead one Lanczos iteration before making decision whether new entry
is in 1x1 or 2x2 pivot. No permutation required.
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4 Dj−1

dj

3
5 ,

Djvj = ST
j b, yj = Sjvj ,
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Djvj = ST
j b, yj = Sjvj ,

yj = yj−1 + sjd−1

j sT
j b.

Note: Marcia (2007) uses Bunch-Marcia factorization - look ahead two Lanczos iterations. Does not
need estimate of ‖K‖ .

SYMMLQ (Paige & Saunders 1975) uses Tj = LjWj . SYMMBK generally has favourable operation
counts and but requires one extra vector to be stored.
For SPD problems, SYMMBK reduces to the CG method.
MINRES: minxj∈Kj

‖Kxj − b‖ SYMBBK: ‖Kxj − b‖ ≤ ‖L‖
‚‚‚ bSjb

‚‚‚ , S =
h
Sj , bSj

i
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SYMMBK vs MINRES
Matlab 2007a

P =

2
4 H + AT WA 0

0 W

3
5,

γ = normest(A)2/normest(H),

W = γI,

W = diag(w1, w2, . . . , wm)

wi =

8
<
:

0 if row i in A is dense;
1

γ
otherwise.

(Rees & Greif, SISC 2007)

λ = 1,

λ = −1,

λ ∈ (−1, 0).
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SYMMBK vs MINRES
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SYMMBK vs MINRES (cont.)

min
x∈Rn

1

2
xT Hx + gT x subject to Ax = b, x ≥ 0.

Predictor-corrector interior-point method (solve two KKT systems with
same coefficient matrix each iteration)
KSIP (n = 1021, m = 1001)
After 3 interior-point iterations (SYMMBK tolerance 10−2)
Warning: too many negative eigenvalues found
> In symmbk2 at 201
In QP MPC2 at 231
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SYMMBK vs MINRES (cont.)

min
x∈Rn

1

2
xT Hx + gT x subject to Ax = b, x ≥ 0.

Predictor-corrector interior-point method (solve two KKT systems with
same coefficient matrix each iteration)
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SYMMBK vs MINRES (cont.)

min
x∈Rn

1

2
xT Hx + gT x subject to Ax = b, x ≥ 0.

Predictor-corrector interior-point method (solve two KKT systems with
same coefficient matrix each iteration)
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PDE-constrained problem

min
u,f

1

2
‖u− bu‖2

2
+ β ‖f‖2

2

subject to

−∇
2u = f in Ω = [0, 1]

2

u = bu on δΩ,

where

bu =

(
16(x − 1

2
)2(y − 1

2
)2 if (x, y) ∈

ˆ
0, 1

2

˜
2

0 otherwise.

β = 0.01
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PDE-constrained problem

Using bilinear Q1 elements:

A =

2
664

2βM 0 −M

0 M KT

−M K 0

3
775 , P =

2
664

2βM 0 0

0 M 0

0 0 KM−1K

3
775
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(Rees, Dollar & Wathen, 2008 Tech Report)

λ = 1,

1

2

0
@1 +

s
5 +

2α1h4

β

1
A ≤ λ ≤

1

2

 
1 +

s
5 +

2α2

β

!
,

1
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1 −

s
5 +

2α2

β

!
≤ λ ≤
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0
@1 −

s
5 +

2α1h4

β

1
A .
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PDE-constrained problem

Using bilinear Q1 elements:

A =

2
664

2βM 0 −M

0 M KT

−M K 0

3
775 , P =

2
664

2βfM 0 0

0 fM 0

0 0 eKM−1 eK

3
775

h n SYMMBK(10−6) SYMMBK(10−12) MINRES(10−6) MINRES(10−12)
2−2 27 0.02 (7) 0.04 (12) 0.02 (7) 0.04 (12)
2−3 147 0.03 (7) 0.05 (14) 0.03 (7) 0.05 (14)
2−4 675 0.06 (9) 0.08 (14) 0.06 (9) 0.09 (14)
2−5 2883 0.12 (7) 0.22 (14) 0.12 (7) 0.23 (14)
2−6 11907 0.66 (9) 0.99 (14) 0.67 (9) 1.05 (14)
2−7 48487 2.97 (9) 4.96 (16) 3.04 (9) 5.05 (16)
2−8 195075 14.1 (9) 26.4 (18) 15.6 (9) 25.3 (17)
2−9 783363 71.8 (11) 119 (20) 71.1 (11) 122 (20)
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Conclusions

Would like to track inertia of saddle-point problem

SYMMBK allows us to do this
In our examples, SYMMBK performs similarly to MINRES
GALAHAD

Durham 2008 – p.14/14



Conclusions

Would like to track inertia of saddle-point problem
SYMMBK allows us to do this

In our examples, SYMMBK performs similarly to MINRES
GALAHAD

Durham 2008 – p.14/14



Conclusions

Would like to track inertia of saddle-point problem
SYMMBK allows us to do this
In our examples, SYMMBK performs similarly to MINRES

GALAHAD

Durham 2008 – p.14/14



Conclusions

Would like to track inertia of saddle-point problem
SYMMBK allows us to do this
In our examples, SYMMBK performs similarly to MINRES
GALAHAD

Durham 2008 – p.14/14


	Nonlinear programming problems
	Methods for solving KKT system
	Inertia revealing property
	Requirements
	 
	Lanczos method
	SYMMBK (Chandra 1978)
	SYMMBK vs MINRES
	SYMMBK vs MINRES (cont.)
	SYMMBK vs MINRES (cont.)
	SYMMBK vs MINRES (cont.)
	PDE-constrained problem
	Conclusions

