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Many methods for solution of

min F'(x) subjectto Az =0b,Cx >0
reR™

involve solving a sequence of equality programming problems of the form

1
min —p! Hp+ g'p subjectto Ap = —d.
peER™ 2
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- Rutherford Appleton Laboratory Nonlinear programming prOblemS

Many methods for solution of

min F'(x) subjectto Az =0b,Cx >0
reR™

involve solving a sequence of equality programming problems of the form

1
min —p! Hp+ g'p subjectto Ap = —d.
peER™ 2

Karush-Kuhn-Tucker equations:

H AT
A 0

Durham 2008 — p.2/14




Science & Technology Facilities Council

@ Rutherford Appleton Laboratory MethOdS for Solving KKT SyStem

H AT
A 0

Direct sparse methods

Durham 2008 — p.3/14
C



Science & Technology Facilities Council

@ Rutherford Appleton Laboratory MethOdS for Solving KKT SyStem

H AT
A 0

Direct sparse methods
M Black box

Durham 2008 — p.3/14
C



Science & Technology Facilities Council

@ Rutherford Appleton Laboratory MethOdS for Solving KKT SyStem

A 0

HAT]

Direct sparse methods
M Black box

M Inertia revealing

Durham 2008 — p.3/14
C



Science & Technology Facilities Council

@ Rutherford Appleton Laboratory MethOdS for Solving KKT SyStem

H AT P —g
A 0 —A —d

Direct sparse methods
M Black box
M Inertia revealing

B May have problems with very large problems

Durham 2008 — p.3/14
C



Science & Technology Facilities Council

@ Rutherford Appleton Laboratory MethOdS for Solving KKT SyStem

H AT P —g
A 0 —A —d

Direct sparse methods
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M Inertia revealing

B May have problems with very large problems
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@ Rutherford Appleton Laboratory MethOdS for Solving KKT SyStem

H AT p —g
A 0 ) —d

Direct sparse methods
M Black box
M Inertia revealing

B May have problems with very large problems
MINRES

M Short-term recurrence
B Symmetric and positive-definite preconditioner

M Not inertia revealing
Projected PCG
M Short-term recurrence
M Inertia revealing
G AT

M Uses constraint preconditioner
A 0
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1
min —p? Hp+ g p subjectto Ap = —d. (EQP)
pER™ 2

n H AT P —g

m A 0 —A —d

K
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@ Rutherford Appleton Laboratory Inertia I'EVealiIlg property

1
min —pTHp—i—ng subjectto Ap = —d. (EQP)
pER™ 2
n H AT P | -y
m A 0 —A —d
K
Theorem (Gould 1985): Let A have full row rank and Z be such that AZ = 0 and rank(A”, Z) = n.

Then
(EQP) has a strong minimizer iff Z7 H Z is positive definite;
(EQP) has weak minimizer if ZT HZ is positive semi-definite with Z THZ singular and

equations consistent;

Otherwise, (EQP) has no finite solution.
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@ Rutherford Appleton Laboratory Inertia I'EVealiIlg property

1
min —pTHp—i—ng subjectto Ap = —d. (EQP)
pER™ 2
n H AT P | -y
m A 0 —A —d
K
Theorem (Gould 1985): Let A have full row rank and Z be such that AZ = 0 and rank(A”, Z) = n.

Then
(EQP) has a strong minimizer iff Z7 H Z is positive definite;

(EQP) has weak minimizer if ZT HZ is positive semi-definite with Z THZ singular and
equations consistent;

Otherwise, (EQP) has no finite solution.

PPCG method derived by applying PCG to problem of form Z© HZp, = r, with preconditioner
zTGz
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@ Rutherford Appleton Laboratory Inertia I'EVealiIlg property

1

min —p? Hp+ g p subjectto Ap = —d. (EQP)
pER™ 2

n H AT P | g

m A 0 —A —d

Ve

K
Theorem (Gould 1985): Let A have full row rank and n_ and ng be the number of negative and zero
eigenvalues of K. Then

(EQP) has a strong minimizer iff n_ = m and ng = 0;
(EQP) has weak minimizer iff n_ = m, ng > 0 and equation consistent;

Otherwise, (EQP) has no finite solution.
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We would like to form an iterative method that
1s a short-term recurrence scheme;
1s 1nertia revealing;
performs similarly to MINRES.
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Can we build a basis U/, for the Krylov subspace
’Cj (K, 7“0) — Span {7“0, K?“(), K27“0, c ey Kj’l“o}

such that U]T KU j is block diagonal with 1x1 and 2x2 blocks?
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No, but can detect at each stage whether we should form a 2x2 or 1x1 block.

Durham 2008 — p.6/14
C



Science & Technology Facilities Council

@ Rutherford Appleton Laboratory

Can we build a basis U/, for the Krylov subspace
’Cj (K, 7“0) — Span {7“0, K?“(), K27“0, c ey Kj’l“o}

such that U]T KU j is block diagonal with 1x1 and 2x2 blocks?
Original idea: Is it possible to find U such that

K

kj—m+1

and K; are 2x2 saddle-point systems with zero (2,2) block?
No, but can detect at each stage whether we should form a 2x2 or 1x1 block.
SYMMBK
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Lanczos method

n H AT p | g
m A 0 —A —d
K M b
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@ Rutherford Appleton Laboratory

Lanczos method

n H AT P I
m A 0 —A —d
K M b

Forms basis Q; of C; (K, rg) such that

T
KQj — QT =vj+1495+1€541,

where

do M

71 01
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@ Rutherford Appleton Laboratory

Lanczos method

n H AT P I
m A 0 —A —d
K M b

Forms basis Q; of C; (K, rg) such that

T
KQj — QT =vj+1495+1€541,

where

do M

71 01

At each iteration, solve T’jv; = Q?b and set y; = Q;v;.
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ke
@ Rutherford Appleton Laboratory SYMMBK (Chal’ldl’a 1978)

Using Bunch-Parlett (1971), factor T; = L; D L;f, where D block diagonal with 1x1 and 2x2
blocks.

—1 T =T T
D; =L;'QTKQ,L;" = STKS,;

Vectors in S; defined by short-term recurrence formula.
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ke
@ Rutherford Appleton Laboratory SYMMBK (Chal’ldl’a 1978)

Using Bunch-Parlett (1971), factor T; = L; D L;f, where D block diagonal with 1x1 and 2x2
blocks.

—1 T -T T
D; :Lj Q; KQij = 5; KS;
Vectors in S; defined by short-term recurrence formula.

Stability (Higham 1999): look ahead one Lanczos iteration before making decision whether new entry
is in 1x1 or 2x2 pivot. No permutation required.

D; = Di—1 ,
d;

Djvj — S;-rb, yj — Sjvj,

yj = yj—l + de;lsfb
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ke
@ Rutherford Appleton Laboratory SYMMBK (Chal’ldl’a 1978)

Using Bunch-Parlett (1971), factor T; = L; D L;f, where D block diagonal with 1x1 and 2x2
blocks.

—1 T -T T
D; :Lj Q; KQij = 5; KS;
Vectors in S; defined by short-term recurrence formula.

Stability (Higham 1999): look ahead one Lanczos iteration before making decision whether new entry
is in 1x1 or 2x2 pivot. No permutation required.

D; = Di—1 ,
d;

Djvj — S;-rb, yj — Sjvj,

yj = yj—l + de;lsfb

Note: Marcia (2007) uses Bunch-Marcia factorization - look ahead two Lanczos iterations. Does not
need estimate of || K|| .
SYMMLQ (Paige & Saunders 1975) uses T; = L;W;. SYMMBK generally has favourable operation
counts and but requires one extra vector to be stored.
For SPD problems, SYMMBK reduces to the CG method.

MINRES: min, e, [ Kz; —b|| SYMBBK: |[Ka; —b|| < ||| H@b” S = [Sj,§j]
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@ Rutherford Appleton Laboratory SYMMBK VS MINRES

Matlab 2007a
b H+ATWA 0 |
0 %4

v = normest(A)?/normest(H),
W = ~I,
W = diag(wi,wa,...,wmnm)

0 ifrow¢in A is dense;

w; =

1 otherwise.
Y

(Rees & Greif, SISC 2007)
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@ Rutherford Appleton Laboratory SYMMBK VS MINRES

CVXQP1_M KSIP
; 10 v

== SYMMBK
= \IINRES

== SYMMBK
= MINRES

107

-
oI
IS
T

|
o

|
®

relative residual (2-norm)
= =
‘ ‘

relative residual (2-norm)

L L L 10 Il Il Il Il
0 50 100 150 200 0 2 4 6 8 10

iterations iterations

CVXQPI_M (n = 1000, m = 500) KSIP (n = 1021, m = 1001)
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a.
@ Rutherford Appleton Laboratory SYMMBK VS MINRES (Cont.)

1

min —ax' Hz + g’z  subjectto Az =b,z > 0.
zER" 2

Predictor-corrector interior-point method (solve two KKT systems with
same coefficient matrix each iteration)

KSIP (n = 1021, m = 1001)

After 3 interior-point iterations (SYMMBK tolerance 1072)
Warning: too many negatilive elgenvalues found

> In symmbk2 at 201

In QP MPC2 at 231
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@ Rutherford Appleton Laboratory SYMMBK VS MINRES (Cont.)

1
min —ax' Hz + g’z  subjectto Az =b,z > 0.
zER" 2

Predictor-corrector interior-point method (solve two KKT systems with
same coefficient matrix each iteration)

CVXQP2_M (corrector)

CVXQP2_M (predictor)

25— ‘ 30 : :
Y B N I T symmek 108 || | e SYMMBK 1078 (7.67s)
. = MINRES 1078 . = MINRES 1078 (7.37s)
‘= SYMMBK adaptive 25} 'mhe SYMMBK adaptive (4.20s) H
207 =de= MINRES adaptive|| == MINRES adaptive (3.77s)

5 ® 20t
2, 2
9" 2
an an
z g 15
= =
S 1o :
S = 10l
s 2 10
> >
(7] 7]

5t 5l

0 L L L 0 L L L

0 5 10 15 20 0 5 10 15 20

IP iterations IP iterations

Adaptive tolerance min{10~2, max{0.01u,10719}}
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@ Rutherford Appleton Laboratory SYMMBK VS MINRES (Cont.)

1
min —ax' Hz + g’z  subjectto Az =b,z > 0.
zER" 2

Predictor-corrector interior-point method (solve two KKT systems with
same coefficient matrix each iteration)

1 — T T T T 1 T T T
\-\l
] [ ]
0ol — f I wel B Sl
]
- '
osf 1 08f ,
1 '
0.7 b 0.7} =
0.6 o6} ?
| |
2 os L 05}
|
:
0.4 0.4}
‘
0.3 0.3}
n
0.2 0.2f
ot limm SYMMBK ot limm SYMMBK
= \{INRES = \INRES
0 L L L T 0 L L L I T
1 2 3 4 5 1 1.5 2 2.5 3 3.5
o o

Adaptive tolerance min{10~%, max{0.01u,10719}}
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@ Rutherford Appleton Laboratory PDE_Constrained prOblem

.1 2 2
min — |[u — T3 + B [|£]]5

u,f 2
subject to
—Vu = £finQ=10,1)7
u = Uond2,
where
[ 1655 i@y e 03]
0 otherwise.

3 = 0.01

0.7

0.6 —

1

0.4 —

0.3

Durham 2008 — p.13/14
C



Science & Technology Facilities Council
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Using bilinear Q1 elements:

26M 0 —M 26M 0O 0
A = 0 M KT , P = 0 M 0
M K 0 0 0 KM 'K
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@ Rutherford Appleton Laboratory PDE_Constrained prOblem

Using bilinear Q1 elements:

26M 0 —M 26M 0O 0
A = 0 M KT , P = 0 M 0
- M K 0 0 0 KM 'K

(Rees, Dollar & Wathen, 2008 Tech Report)

1 |+ 5+20¢1h4 < 1 |+ 5+2a2
2 g - 2 B )’

1 2042
—(1— 5+—>§ A
2 p

IA

VAN
I
—
|
Q
ot
\V}
w2
>
I
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@ Rutherford Appleton Laboratory

Using bilinear Q1 elements:

PDE-constrained problem

26M 0 —M 26M 0 0
A= 0 M KT |, P= M 0
~-M K 0 KM 'K

h n || SYMMBK(10~%) | SYMMBK(10~'2) || MINRES(10~%) | MINRES(10~'2)
272 27 0.02 (7) 0.04 (12) 0.02 (7) 0.04 (12)
23 147 0.03 (7) 0.05 (14) 0.03 (7) 0.05 (14)
24 675 0.06 (9) 0.08 (14) 0.06 (9) 0.09 (14)
275 2883 0.12 (7) 0.22 (14) 0.12 (7) 0.23 (14)
26 11907 0.66 (9) 0.99 (14) 0.67 (9) 1.05 (14)
27 48487 2.97 (9) 4.96 (16) 3.04 (9) 5.05 (16)
2—8 | 195075 14.1 (9) 26.4 (18) 15.6 (9) 25.3 (17)
279 | 783363 71.8 (11) 119 (20) 71.1 (11) 122 (20)
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Conclusions

Would like to track inertia of saddle-point problem
SYMMBK allows us to do this

In our examples, SYMMBK performs similarly to MINRES
GALAHAD
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