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Navier-Stokes Equations
U, —v Veu+(u-grad)u+grad p = f
—divu=0

a=0 —> steady state problem
a=1 — evolutionary problem

Discretization and linearization ——— Matrix equation

s el A

In this study: C=0

.. Q- B
Use preconditioner of form 9 =| <F
0 —Qg

Solve right-preconditioned system

[AQ*[K]=h, x=97'%
using Krylov subspace method (GMRES)



Key Component of Preconditioner

System:(F BTJ(&j:(f) Preconditioner: (QF BT]
B 0 \%d) \g 0 Qs

J =-vA+(w-grad) on velocity space
F = discrete approximation of ‘F
J,=-vA+(w-grad) on pressure space
F, = discrete approximation of ‘fo

B = discrete (-div), B' = discrete grad
Key: approximation to Schur complement Q, ~ S = BF 7B’

Derived using the commutator # grad —grad f, ~0

Discrete form in finite element setting
M,*FM;"B" —M,"B'M 'F ~0



Two Preconditioning Strategies
E.,Kay, Loghin, Silvester, Wathen, Tuminaro, Howle, Shadid,

Shuttleworth
1. Pressure Convection-Diffusion (PCD)
M,"FM,"B"' -M"B'M 'F_  ~0
—>BF'B' » (BMv‘lBT)Fp‘ll\/I ) = Apr‘lM )
-1pT\-1 -1 -1
(BF™B' )" ~MF A

2. Least-Squares Commutator (LSC)
Choose Fp to minimize
IIM*FM;*BT]; =M BTM R ],
column by column
—-Q;'=(BM;'B")(BM'FM_'B")(BM_ 'B')™

I\/IV
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Backward facing step
Re=100
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Issues

For PCD on step: Latency before asymptotic convergence rate
IS evident, on step

For LSC: Mesh-dependent convergence rate
Superior performance on step

Possible explanations:
Boundary conditions for Fpand Ap
Currently, for Fp in PCD:
Neumann conditions for cavity
Dirichlet at step inflow, Neumann otherwise

Ap matched with Fp

In LSC: boundary conditions are implicitly defined by
A, =BM, ‘B’
Empirical observation: Neumann at step inflow



Operators in One Dimension

Discrete forms:
F, B defined on interval endpoints ~ velocities
Fo, B' defined on interval centers  ~ pressures

~ Marker-and-cell finite differences



Operators in One Dimension

Composite operators B = F B = —Vd— +W—

Assume: Dirichlet condition u=0 for ‘ at inflow x=0
Dirichlet condition u=0 for B at inflow x=0

Look at V= (—v— +W (—v + W) P,

P = Bu_&

At inflow boundary x=0:
v=0 for argument v of Bin BF

= ( dx +W) p =0 for argument p of ‘fp infpB
~— New, Robin, boundary condition at inflow °



Matrix Analogue

1 [ v — (v -v1%)
-1 1 ~(v+w2) 2v - (v-")
B = -1 . , F— = (v +"%) ’

-1 1 ~(v+w2) 2v — (v -"1)
| -11 i -V Vv |

51 —(v-"17) ]

—-(v+"5)  2v - (v-"%)
F — —(v+")

Y S VR SR
ey &

[BF ], =2v=¢ +(v—"%) :[FpB]ll
— é:l :V+W%



Interpret in Terms of Boundary Conditions

| | | | l | | |
X oottt
X—1/2 X1/2 X3/2
\_'_I-
Ghost point

Discrete operator near inflow boundary:
[F Pl =—(V+"5) Py +(2V) Py — (v —"92) s

Discrete Robin boundary condition:
—V%-I—Wp ~ -V( P ;lp—1/2) —I—W( P2 ";p—llz) -0

dx
- —"
Solve for ghost point:  P_y,»,= +W/ P12

> [Fp Pl = ‘(V + WA) P2 —(V="%) Py,

Previous page: <&; to make discrete commutator zero




At Outflow (Right) Boundary:

& —(v—-"%) ]
~-(v+"2)  2v —(v-")
F — —(v+")

_eg) 2 —(r=v)
| ey £

Can force BF-FpB=0 —— £ =2y -

Result: BFE~B' = F,*(BB'"), perfect preconditioner

But: does not have interpretation in terms of
outflow b.c. for %

Mesh dependent condition at right:
—vp +2(Wry4) =0
L-> Reduces coercivity of Fp 11



For Problems in Higher Dimensions

(up)
F=-vA+W-grad = {f j;(uz)}

B =[B,,B,], divergence operator New!

Commutator: ‘F = Bj—f'- j—’p’ B
_ (uy) (uy)
=[B.F“ - F£.B,.B,F* - FB,]

Further refinement: split by coordinate ‘f = ‘f, + F,

2 2
T =—V%—I—W1%, A =—V%—I—W2%

Similarly for f

12



Component Splittings of Commutator

(1) Bxﬁ(ul) _jL;(p)BX (2) :ij:y(ul) _j:y(p)BX
(3) Byjcx(uz) _jcx(p)By (4) Byjt‘y(uz) _j?y(p):By

Commutator satisfies

E=[BF" - F,B.B,F" - F,B,]
~[0)+(2), @)+ (4)

Motivation for this:

 Discrete version of commutator cannot be zero
——> no “perfect” preconditioner is possible

« Components above behave more like one-dimensional
operators

* Perhaps: some are more important than others

13



Examine Commutator Components at Inflow

— TR TR T T ®
a X ®1¥i60172<17@ X @ X @ X20
f _VA—l_W]_ —I_W A~ — O Qo @ & & —
ax ay X o, X118;5%1286 X @ X @ Xi5 X Velocity wu1
— — Qe T Qr T QT Q1T ®— .
Wl > O, W2 — O X s Xco7 X708 X ® X ® Xip ® Veloc1ty u9
—RQr T Q1T QT Q@1 & e Pressure p
X o1 X182 X208 X @ X @ X5

Assume: Dirichlet b.c. along left (inflow)

Periodic b.c. u(x,0)=u(x,1) along bottom and top

V%_pzq U, — (0 atright (outflow)

ax

(1) ij:x(ul) _j:x(p)BX (2) :ij:y(ul) _jL‘y( p):BX
(3) Byjrx(uz) _jCX(D)By (4) Byjcy(uz) _ﬁ(p)By
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Commutator Components at Inflow

QT @ T @ ®T ®

1 B (ul) — (p)B X o:5X160172X17@ X @ X @ X920
O 3.7, 5B, - @) @ ® -+ @ @
2 5 X o, X110;56128 X @ X @ Xi5 X Velocity w1
v + [ ®_( G- TG - @ Velocity us

L7 2
6X aX P01
0 Qrt+ @1+ Q@1 @1 ®— e DPressure p
& < o] X199 X2 X @ X @ X5
el gl ol gl gl

For each fixed y: same as 1D commutator =—>»
want Robin condition for F, " at inflow

(W) _ g (p)
& Bixjjy( i No requirements on F.‘P)
0° 0 y

—VS W, =

Loy

Robin condition for F® at inflow: —vp, +w,p=0
15



A Difficulty with This

We just showed: for component (1) B, F.\* — FPB
to be zero, need Robin b.c. for F¥

Now look at (3) BT(UZ) f(p)B

i

“F2) has a Dirichlet condition,

A implies F? must also have a
X ®1sXi6017¥<17@ X @ X @ X0 . -y

I S S N Dirichlet condition to make (3)
) | ;11X11;12X12; X ; >I< ; X15 X Velocity u1 equal 7ero

) ‘:GUXG“:?’ ><7f 1} ‘: >|< ‘: - @ Velocity us

- 8- 8~ @1 88 » Presswrep  NoOt compatible with Robin

X o1 X129 X208 X @ X @ Xp -y - .

o leg gl sl gl condition imposed by (1)



Summarizing: At Inflow

(1) ij:x(ul) _j:x(p)BX (2) :ij:y(ul) _j:y(p)BX
(uz) (p) (uz) (p)
@) BFS -FPB, (4 BF* - FPB,
Zero commutator components (1) and (3) are incompatible
Zero for (2) and (4): compatible with each other
and with (1) or (3)

We must choose either (1) or (3), I.e., choose either Robin or
Dirichlet boundary conditions for R

Previously: used Dirichlet conditions

Wil show: Robin conditions are better

17



Matrix Versions of these Results (MAC discretization)
Components of discrete commutator:
(up) (p) (Up) (p)
(1) B -F”B, (2) B.F,"” -F,”B,
(1) _ = (p) (u2) _ = (p)
(3 B,F™ -F"B, (4 B,F,"-F/"B,

F~ (v+W1h/2) —2v—' (v wlh/z) =F + F,

--------------------------------------------------------------------------------

F =diag(F,....,F,) 1D tridiagonal matrices,
F) =diag(F,,...,F,) ~ Dirichlet b.c. at left

FP =diag(F,,....F,) 1D tridiagonal, b.c. needed |,



Matrix Versions of these Results (I1)

Component (1)

B, =diag(B,...., B,), B- .

= (1) B,F“ -F!”B,
=diag(B,F, - F,B,..., B,F, —F,B))

Each block is identical to 1D matrices:

Discrete Robin conditions on left for FIO

makes component (1) equal zero
19



Matrix Versions of these Results (I111)

Component (3)

= (3) B,F"” —F"B, =

F, - F,

—(F,—-F,) F,—F,

_(Fz o Fp)

_(F,—F,)

_(Fz o Fp)_

—(F,—-F,) F,—F,

Discrete Dirichlet conditions on left for F
makes component (3) equal zero

(1) and (3) are not compatible




Other Matrix Results

(1) B,F™ -FPB,  (2) B,F") —F"B,
(up) (p) (U) (p)
(3 B,F™ -F"B, (4) BF,™ -F"B,

Components (2) and (4):

+ can be made zero with no requirements onF
« compatible with each other

« compatible with (1) and (3)

Details omitted
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For Characteristic Boundaries

P

L Vo) PN L
[ = | %] | e | e
X @1X16017¥17@ X @ X @ X9p
— Q- Q- @ T Q1 Q-
X @17X110125126 X @ X @ Xi5 X VelOCIty w1
I M T - @ Velocity us
X O Xg®7 X7@® X @& X @ Xj10
— Q1 QT @ T @1 ®— e Pressure p
X o1 X10X20 X @ X @ Xj
Lol o | o | & 1 = |

ke Key ke Key ey

Suppose b.c. of form w=(w.,0) are specified at top and bottom

The analogue of Robin condition is
-vp,+W,p=0 = p, =0

Pure Neumann condition, choice made previously for characteristic
boundaries

General condition: —vp, +(w-n)p=0
Cf. Achdou, LeTallec, Nataf, Vidrascu



What about outflow boundaries?

Have seen: 1D commutator = 0, but coercivity of Fpis reduced

Adopt strategy: Neumann conditions for Fp at outflow
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Recapitulating: for PCD Preconditioning

Original New
Qs MPRA | ARM,
F inflowb.c. | Dirichlet RO
F, characteristic AT Neumann
b.c.
F, outflow b.c. Neumann Neumann
. bUser-deflrt1_ebc:, BM BT
; ©- COMPAUDIE | ¢. inherited
with F
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Iogw(residual)
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Revised Version of Least-Squares Commutator
Preconditioning

Commutator: E =B - F'B
=[BF - F,B.B,F" - F,B)
Finite element discretization
E=M_'BM,"F-M 'F.M'B
=M '[B,M'F"“ —-F M 'B,,B,M,'F" —F M B ]

In finite difference setting:
Robin condition adjusts rows of Fp for commutator with
component of B orthogonal to boundary

Here:
Mimic this by row-wise weighting to de-emphasize the part of
commutator from the component of B tangent to the boundary
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Revised LSC Preconditioning

Find X = Fngl one row at a time such that
” ([BM\/_lF]l - xi,:B)Hll2 ”:” BT[XT]:,i _[FM\/_lBT]:,i ”H
IS minimized in a least squares sense, where
H :W1/2M —].Vvl/Z

and W is a diagonal weighting matrix with small value
W, =¢ for all indices j such that:

B, #0
where 1 IS a pressure index near boundary, and j is the
Index of a velocity component tangent to the boundary

Otherwise: Wjj =1
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Revised LSC Preconditioning

Resulting preconditioning operator:
Q;'=(BM B")*(BM ‘FHB")(BM ‘B")™

where
H zwl/ZM —].\/\/1/2

¢=1/100 In experiments

The only difference from
the original version
(where W=l)
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Concluding Remarks

1. Boundary conditions influence PCD preconditioning

2. Robin boundary conditions for Fp enhance performance
for problems with Dirichlet (inflow or characteristic)
conditions: reduce transient period of slow convergence.

3. Outflow conditions are less well understood. They also
appear to have less impact.

4. Results for PCD lead to modified LSC with better properties:
convergence rate independent of mesh.

5. Results clarify poorly understood aspect of these ideas:
weaknesses previously displayed were caused by boundary
conditions. (Cf. projection methods.)
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