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Navier-Stokes Equations
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Key Component of Preconditioner
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Two Preconditioning Strategies
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2.  Least-Squares Commutator (LSC) 

E.,Kay, Loghin, Silvester, Wathen,Tuminaro, Howle, Shadid, 

Shuttleworth

1. Pressure Convection-Diffusion (PCD)
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Representative Performance I

Driven cavity flow

Re=200
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Representative Performance II

Backward facing step

Re=100
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For PCD on step: Latency before asymptotic convergence rate

is evident, on step

For LSC:               Mesh-dependent convergence rate

Superior performance on step

Possible explanations:

Boundary conditions for Fp and Ap

Currently, for Fp in PCD:  

Neumann conditions for cavity

Dirichlet at step inflow, Neumann otherwise

Ap matched with Fp

In LSC:  boundary conditions are implicitly defined by
T

vp BBMA 1

Empirical observation:  Neumann at step inflow
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Operators in One Dimension
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Discrete forms:   

F, B defined on interval endpoints ~ velocities

Fp, B  defined on interval centers     ~ pressures
T

~ Marker-and-cell finite differences



Operators in One Dimension
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Composite operators
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Assume:   Dirichlet condition u=0 for F at inflow x=0

Dirichlet condition u=0 for B at inflow x=0
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At inflow boundary x=0:
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New, Robin, boundary condition at inflow

for argument v of B in BF
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Matrix Analogue
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Interpret in Terms of Boundary Conditions
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Ghost point

Discrete operator near inflow boundary:

Discrete Robin boundary condition:
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wh
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1Previous page: to make discrete commutator zero



At Outflow (Right) Boundary:

Can force BF-FpB=0
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But:   does not have interpretation in terms of 

outflow b.c. for Fp

Result:  ),(11 T

p

T BBFBBF perfect preconditioner

0)(2 hwp'

Mesh dependent condition at right:

Reduces coercivity of Fp 11



For Problems in Higher Dimensions
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Component Splittings of Commutator
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Motivation for this:  

• Discrete version of commutator cannot be zero

no “perfect” preconditioner is possible

• Components above behave more like one-dimensional

operators

• Perhaps:  some are more important than others

Commutator satisfies  
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Examine Commutator Components at Inflow
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Commutator Components at Inflow

x

p

x

u

xx BFFB )()( 1  (1)

x
w

x
12

2

x

For each fixed y:  same as 1D commutator

want Robin condition for         at inflow
)( p

xF

x

p

y

u

yx BFFB )()( 1  (2)

y
w

y
12

2
No requirements on )( p

yF

Robin condition for           at inflow: )( pF 01 pwpx
15



has a Dirichlet condition, 

implies           must also have a

Dirichlet condition to make (3)

equal zero

A Difficulty with This
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Summarizing:  At Inflow
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Zero commutator components (1) and (3) are incompatible

Zero for (2) and (4):  compatible with each other  

and  with (1) or (3)

We must choose either (1) or (3), i.e., choose either Robin or 

Dirichlet boundary conditions for 
)( pF

Previously:  used Dirichlet conditions 

Will show:  Robin conditions are better



Matrix Versions of these Results (MAC discretization)
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Matrix Versions of these Results (II)
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Component (1)

Discrete Robin conditions  on left for 

makes component (1) equal zero 
pF
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Matrix Versions of these Results (III)
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Other Matrix Results
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Components (2) and (4):

• can be made zero with no requirements on

• compatible with each other

• compatible with (1) and (3)

Details omitted
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For Characteristic Boundaries

Suppose b.c. of form w=(w1,0) are specified at top and bottom

The analogue of Robin condition is

0        02 yy ppwp

Pure Neumann condition,  choice made previously for characteristic

boundaries

0)( pnwpnGeneral condition:

Cf.  Achdou, LeTallec, Nataf, Vidrascu



What about outflow boundaries?

Have seen:  1D commutator ≡ 0, but coercivity of Fp is reduced

Adopt strategy:  Neumann conditions for Fp at outflow
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Recapitulating:  for PCD Preconditioning
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Performance I

Driven cavity flow

Re=200

Various grid sizes

Biquadratic velocities

Bilinear pressures

32x32 grid

64x64 grid 128x128 grid
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Performance II

Backward facing step

Re=100

Various grid sizes

Biquadratic velocities

Bilinear pressures

32x96 grid

64x192 grid
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128x384 grid



Performance III

Backward facing step

Re=100, 400

Various grid sizes

Biquadratic velocities

Bilinear pressures

Re=400,

32x96 grid

Re=100,

64x192 grid

Re=400,

64x192 grid
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Revised Version of Least-Squares Commutator

Preconditioning
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Finite element discretization

In finite difference setting:  

Robin condition adjusts rows of Fp for commutator with 

component of B orthogonal to boundary

Here:  

Mimic this by row-wise weighting to de-emphasize the part of 

commutator from the component of B tangent to the boundary 
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Revised LSC Preconditioning
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and W is a diagonal weighting matrix with small value 

=ε for all indices j such that:

where i is a pressure index near boundary, and j is the 

index of a velocity component tangent to the boundary
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Otherwise:  1jjW
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Revised LSC Preconditioning
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Resulting preconditioning operator:

2/112/1 WMWH v

where

The only difference from

the original version

(where W=I)
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ε=1/100 in experiments
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Concluding Remarks

1. Boundary conditions influence PCD preconditioning

2. Robin boundary conditions for Fp enhance performance

for problems with Dirichlet (inflow or characteristic)

conditions:  reduce transient period of slow convergence.

3. Outflow conditions  are less well understood.  They also

appear to have less impact.

4. Results for PCD lead to modified LSC with better properties:

convergence rate independent of mesh. 

5. Results clarify poorly understood aspect of these ideas:

weaknesses previously displayed were caused by boundary 

conditions.  (Cf. projection methods.)


