
Simulation based Optimization

Eldad Haber

August 18, 2008

Goals

PDE optimization problems can be very involved.

Try to explain the essence and possible pitfalls

Encourage you to get into this cool! field

Give some simple software to demonstrate these concepts

Outline

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Matlab Code

Outline

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Matlab Code

Outline

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Matlab Code

Outline

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Matlab Code

Outline

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Matlab Code

Outline

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Matlab Code

Outline

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Matlab Code

Outline

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Matlab Code

Simulation and Optimization

The (continuous) problem:

min J (y, u)
subject to c(y, u) = 0

u ∈ U model - control
y ∈ Y field - state
J : [U × Y]→ R1

c : [U × Y]→ Ŷ

Simulation and Optimization

The (discrete) problem:

min J (y, u)
subject to c(y, u) = 0

u ∈ Rn model - control
y ∈ Rm field - state
J : Rm+n → R1

c : Rm+n → Rm

Example I

Seismic inversion Clerbout 2000

min J =
1
2

∑
i

‖Qjyj − d‖2 +
α

2
‖Lu‖2

s.t. c(yj, u) = ∆hyj + k2u� yj = 0 j = 1, . . . ns

Example II
Electromagnetic inversion Newman 1996

min J =
1
2

∑
j

‖Qjyj − d‖2 +
α

2
‖Lu‖2

s.t. c(yj, u) = (∇× µ−1∇×)hyj + iωS(u)yj = 0 j = 1, . . . , ns

Example III

Image Processing - transprot Modersitzki 2003

min J =
1
2
‖y(T, x)− d(x)‖2 + αS(u)

subject to yt + u>∇y = 0 y(0, x) = y0(x)

Example IV

Shape Optimization Haslinger & Makinen 2003

min J = g(y)
subject to c(y, u) = ∆hy− f (u) = 0

Some Historical Prespective

Optimization with O/PDE constraint is common practice in many
applications for many years

Geophysical inversion for conductivity (Schlumberger 1912)

Other fields: Flow design, VLSI, trajectory planning, chemical
reaction control, ... (starting in the 30’s and on)

However,

better computer architecture→ larger simulations

development in numerical PDE’s→ complex models

New optimization algorithms are needed

Some Historical Prespective

Optimization with O/PDE constraint is common practice in many
applications for many years

Geophysical inversion for conductivity (Schlumberger 1912)

Other fields: Flow design, VLSI, trajectory planning, chemical
reaction control, ... (starting in the 30’s and on)

However,

better computer architecture→ larger simulations

development in numerical PDE’s→ complex models

New optimization algorithms are needed

Some Historical Prespective

Optimization with O/PDE constraint is common practice in many
applications for many years

Geophysical inversion for conductivity (Schlumberger 1912)

Other fields: Flow design, VLSI, trajectory planning, chemical
reaction control, ... (starting in the 30’s and on)

However,

better computer architecture→ larger simulations

development in numerical PDE’s→ complex models

New optimization algorithms are needed

Some Historical Prespective

Optimization with O/PDE constraint is common practice in many
applications for many years

Geophysical inversion for conductivity (Schlumberger 1912)

Other fields: Flow design, VLSI, trajectory planning, chemical
reaction control, ... (starting in the 30’s and on)

However,

better computer architecture→ larger simulations

development in numerical PDE’s→ complex models

New optimization algorithms are needed

Before we do anything
All you got to do is think Pooh Bear

Our framework: Discretize-Optimize

min J (y, u) s.t c(y, u) = 0

Optimize-Discretize: Can yield inconsistent gradients of the objective
functionals. The approximate gradient obtained in this way is not a true
gradient of anything–not of the continuous functional nor of the discrete
functional.

Discretize-Optimize Requires to differentiate computational facilitators
such as turbulence models, shock capturing devices or outflow boundary
treatment.
M. Gunzburger

Want to use the wealth of optimization algorithms

Simulation and Optimization

Need to discretize the PDE (constraint)

Parameters change - modeling need to be flexible

Need to optimize - derivatives

Discretizing c(y, u) = 0 - difficulties

Stability with respect to parameters

c(y, u) = yt − uyxx

Explicit vs Implicit

Explicit:

ch(yh, uh) = yn+1
h − yn

h − uh �
δt
δx2 Lyn

h = 0

Discretizing c(y, u) = 0 - difficulties

Stability with respect to parameters

Stability requires uhδt ≈ δx2

do not know u→ hard to guarantee stability.

Code has to make sure discretization is compatible

Possible solution: implicit methods are unconditionally stable

Discretizing c(y, u) = 0 - difficulties

Stability with respect to parameters

c(y, u) = yt − uyxx

Explicit vs Implicit

Implicit:

ch(yh, uh) = yn+1
h − yn

h − uh �
δt
δx2 Lyn+1

h = 0

No free lunch, need to invert a matrix

Discretizing c(y, u) = 0 - difficulties

Differentiability of the discretization

c(y, u) = εyxx + uyx = 0

Common discretization, upwind

ε

h2 (yj+1 − 2yj + yj−1) +

1
h

(max(uj, 0)(yj − yj−1) + min(uj, 0)(yj+1 − yj)) = 0

Discretizing c(y, u) = 0 - difficulties

The continuous problem is continuously differentiable w.r.t u

εyxx + uyx = 0

The discrete problem is not differentiable w.r.t uh

ε

h2 (yj+1 − 2yj + yj−1) +

1
h

(max(uj, 0)(yj − yj−1) + min(uj, 0)(yj+1 − yj)) = 0

Even more difficult for flux limiters

Discretizing c(y, u) = 0 - difficulties

The continuous problem is continuously differentiable w.r.t u but
discrete problem is not

εyxx + uyx = 0

No magic solution for this one - can pose real difficulty for the DO
approach

Discretizing c(y, u) = 0 - difficulties

Nonlinearity of the discretization
”the mother of all elliptic problems” Dendy 1991

−∇ · (u∇y) = q

Finite volume discretization

A(uh)yh =

−∇·︷︸︸︷
D> diag (N(uh))︸ ︷︷ ︸

u

∇︷︸︸︷
D yh = qh

where N(uh) = (Avu−1
h)−1 harmonic averaging

The continuous problem is bilinear but discrete problem is more
nonlinear.

Discretizing c(y, u) = 0 - difficulties

Nonlinearity of the discretization
”the mother of all elliptic problems” Dendy 1991

−∇ · (u∇y) = q

Finite volume discretization

A(uh)yh =

−∇·︷︸︸︷
D> diag (N(uh))︸ ︷︷ ︸

u

∇︷︸︸︷
D yh = qh

where N(uh) = (Avu−1
h)−1 harmonic averaging

The continuous problem is bilinear but discrete problem is more
nonlinear.

Discretizing c(y, u) = 0 - difficulties

Nonlinearity of the discretization

−∇ · (u∇y) = q

Finite volume discretization

A(uh)yh =

−∇·︷︸︸︷
D> diag (N(uh))︸ ︷︷ ︸

u

∇︷︸︸︷
D yh = qh

Differentiate the discrete approximation rather than the
continuous one

Before we solve

PDE optimization problems are different because PDE’s are
different

To make progress need to classify them. Use similar tools for
similar problems

Need good model problems to experiment with

Discretization - summary

Classify PDE’s using 2 categories

PDE’s that are smooth enough such that the DO approach works
well

PDE’s that require special attention in their discretization, need
OD

Although we look at the PDE through the discretization these
properties are intrinsic to the PDE itself

Discretization - summary

Classify PDE’s using 2 categories

Smooth PDE’s such that the DO approach works well
Elliptic problems
Parabolic problems
Smooth hyperbolic problems
Some nonlinear problems

PDE’s require special attention in their discretization, need OD
Hyperbolic problems with nonsmooth initial data
Nonlinear problems with shocks
Other Nonlinear problems e.g, Eikonal and alike

Accuracy issues

For many problems, constraint must be taken seriously (physics)
but the optimization less so (noise, regularization)

In many cases the control-model change little after the first
reduction of the objective function

Example:

min ‖u− b‖2 + αTVε(u)
s.t ∇ · u∇y = q

where

TVε(t) =
{ 1

2ε t2 + ε
2 |t| ≤ ε

|t| |t| > ε

Accuracy issues

Example:

min ‖u− b‖2 + αTVε(u)
s.t ∇ · u∇y = q

ε = 100

Accuracy issues

Example:

min ‖u− b‖2 + αTVε(u)
s.t ∇ · u∇y = q

ε = 10−1

Accuracy issues

Example:

min ‖u− b‖2 + αTVε(u)
s.t ∇ · u∇y = q

ε = 10−2

Optimization
Can we build it? Yes we can! Bob the builder

Solving the optimization problem

Constrained approach, solve

min J (y, u)
subject to c(y, u) = 0

Unconstrained approach, eliminate y to obtain

min J (y(u), u)

Constrained vs. unconstrained

Example: c(y, u) = A(u)y− q = 0
Constrained approach,

min J (y, u)
subject to A(u)y = q

Unconstrained approach,

min J (A(u)−1q, u)

Invertibility of A(u)
Cost of evaluating the ObjFun.

Constrained vs. unconstrained

Example: c(y, u) = A(u)y− q = 0
Constrained approach,

min J (y, u)
subject to A(u)y = q

Unconstrained approach,

min J (A(u)−1q, u)

Invertibility of A(u)
Cost of evaluating the ObjFun.

Constrained vs Unconstrained

Constrained approach,

Saddle point problem

Algorithmically hard

No need to solve the constraints until the end

Unconstrained approach

Simple from an optimization standpoint

Need to solve the constraint equation PDE

Becomes even messier for nonlinear PDE’s

But: always feasible!!!

Constrained vs Unconstrained

Sequential Quadratic Programming

The Lagrangian
L = J (y, u) + λ>Mc(y, u)

where
λ>Mc(y, u) ≈

∫
Ω
λ(x)c(y(x), u(x)) dx

Differentiate to obtain the Euler Lagrange equations (Assume M = I)

adjoint Jy + c>y λ = 0

state Ju + c>u λ = 0

constraint c(y, u) = 0

Computing Jacobians

Need to compute cy, cu

In many cases cy available (used for the forward)

Need to compute cu, calculus with matrices helps

In some cases cy not used for the forward

Jacobians, example I:Hydrology, electromagnetics

c(y, u) = A(u)y− q = D>diag((Avu−1)−1)Dy− q

Then

cy = A(u)

cu =
∂

∂u

[
D>diag((Avu−1)−1)Dy

]
Note that

D>diag((Avu−1)−1)Dy = D>diag(Dy) (Avu−1)−1

therefore

cu = D>diag(Dy) diag((Avu−1)−2)Avdiag(u−2)

Jacobians, example II : CFD

NS equations

∆hy + M(y)y +∇hp = u

∇h · yk = 0

Where M(y) ≈ ∇y
Typical solution through fixed point iteration [Elman, Silvester, Wathen]

∆hyk + M(yk−1)yk +∇hp = u

∇h · yk = 0

Thus to compute c(y) need extra calculation

Jacobians, example II : CFD

In general

c(y, u) = 0

Use some iteration to solve (not Newton’s method)
From an optimization theory we need the Jacobians cy, cp of the
constraint otherwise cannot guarantee convergence

Open Question: Can we get away with less?

Two alternative viewpoints

adjoint Jy + c>y λ = 0

state Ju + c>u λ = 0

constraint c(y, u) = 0

A system of nonlinear PDE’s Necessary conditions
use PDE techniques use optimization framework

(MG, FAS, ...) (reduce Hessian ...)
MG(linear)

MGOPT [Luis & Nash]

Two alternative viewpoints

A system of nonlinear PDE’s Necessary conditions
use PDE techniques use optimization framework

(MG, FAS, ...) (reduce Hessian ...)

Our approach:
Use PDE techniques as solvers
Use optimization methods for a guide

Two alternative viewpoints

A system of nonlinear PDE’s Necessary conditions
use PDE techniques use optimization framework

(MG, FAS, ...) (reduce Hessian ...)

Our approach:
Use PDE techniques as solvers
Use optimization methods for a guide

Solving the Euler Lagrange equations

adjoint Jy + c>y λ = 0

state Ju + c>u λ = 0

constraint c(y, u) = 0

Approximate the Hessian and solve at each iteration the KKT systemLyy Lyu c>y
L>yu Luu c>u
cy cu O

sy

su

sλ

 = rhs

Solving the Euler Lagrange equations

In many applications approximate the Hessian byJyy O c>y
O Juu c>u
cy cu O

sy

su

sλ

 = rhs

Gauss-Newton SQP [Bock 89]

If Jyy and Juu are positive semidefinite then the reduced Hessian is
likely to be SPD.

Solving the KKT system

Lyy Lyu c>y
L>yu Luu c>u
cy cu O

sy

su

sλ

 = rhs

Direct methods are (almost) out of the question!

Multigrid methods for the KKT system

The reduced Hessian

Preconditioners

Solving the KKT system - multigrid

Lyy Lyu c>y
L>yu Luu c>u
cy cu O

sy

su

sλ

 = rhs

Multigrid is a good tool to study the problem

May use other techniques at the end

Learn about the discretization/solver

Solving the KKT system - multigrid

Ascher & H. 2000, Kunish & Borzi 2003Lyy Lyu c>y
L>yu Luu c>u
cy cu O

sy

su

sλ

 = rhs

Check ellipticity of the continuous problem

Check h-ellipticity of the discrete problem

Multigrid h-ellipticity

Look at the symbol Ta’asan

Ĥ(θ) =

L̂yy ĉ∗y
L̂uu ĉ∗u

ĉy ĉu 0


Compute the determinant

|det(H)(θ)| = L̂yyĉ∗u ĉu + L̂uuĉ∗y ĉy

Look at high frequencies

Example

Load problem

min
1
2
‖y− d‖2 +

α

2
‖Lu‖2 s.t ∆y− u = 0

Ĥ(θ) =

 1 ∆̂h

αL̂ 1
∆̂ 1 0


Compute the determinant of the symbol (b∆h = h−22(cos(θ1) + cos(θ2)− 2))

|det(H)(θ)| = 1 + αL̂∆̂2
h

Look at high frequencies

Solving the KKT system - multigrid

Lyy Lyu c>y
L>yu Luu c>u
cy cu O

sy

su

sλ

 = rhs

Box smoothing - solve the equation locally

Solving the KKT system - multigrid

Lyy Lyu c>y
L>yu Luu c>u
cy cu O

sy

su

sλ

 = rhs

Need:

smoother - box smoothing, others?(in progress)

coarse grid approximation

solution on the coarsest grid (may not be so coarse)

Solving the KKT system - multigrid

Case by case development

Hard to generalize, even when BC change

May worth the effort if the same type of problem is repeatedly
solved

Solving the KKT system - The reduced Hessian

Nocedal & Wright 1999 Lyy O c>y
O Luu c>u
cy cu O

sy

su

sλ

 = rhs

Eliminate sy

cysy + cusu = ...

Eliminate sλ

Lyysu + c>u sλ = ...

Obtain an equation for su

Hrsu =
(

c>u c−>y Lyyc−1
y cu + Luu

)
︸ ︷︷ ︸

the reduced Hessian

su = rhs

The reduced Hessian in Fourier space
Use LFA to study the properties of the reduced Hessian.
Load problem

min
1
2
‖y− d‖2 +

α

2
‖Lu‖2 s.t ∆y− u = 0

Ĥ(θ) =

 1 ∆̂h

αL̂ 1
∆̂ 1 0


The symbol of the reduced Hessian (b∆h = h−22(cos(θ1) + cos(θ2)− 2))

∆̂−2
h + αL̂

Very unstable for small α

More on the reduced Hessian method

Hrsu =
(
c>u c−>y Lyyc−1

y cu + Luu
)

su = rhs

For QP with linear constraints the reduced Hessian is equivalent
to the Hessian of the unconstrained approach

The reduced Hessian represents an integro-differential equation

Efficient solvers for the reduced Hessian is an open question,
recent work [Biros & Dugan]

Even more on the reduced Hessian method

The reduced Hessian can be viewed as a block factorization of the
(permuted) KKT system H. & Ascher 2001, Biros & Gahttas 2005, Dollar & Wathen 2006

 cy O cu

Lyy c>y O
O cu Luu

−1

=

c−1
y O −JH−1

r
O c−>y −c−>y JH−1

r
O O H−1

r

 ·
 I O O

c−1
y I O

−J>c−1
y −J> I



J = c−1
y cu

Hr = J>J + Luu

Solving the KKT system - iterative methods and
preconditioners

Solve Lyy Lyu c>y
L>yu Luu c>u
cy cu O

sy

su

sλ

 = rhs

Using some Krylov method (MINRES, SYMQMR, GMRES, ...)

Indefinite

Highly ill-conditioned

A must: Preconditioner

Many of the preconditioners developed for general optimization
problems are not useful

Solving the KKT system - iterative methods and
preconditioners

Solve Lyy Lyu c>y
L>yu Luu c>u
cy cu O

sy

su

sλ

 = rhs

Using some Krylov method (MINRES, SYMQMR, GMRES, ...)

Indefinite

Highly ill-conditioned

A must: Preconditioner

Many of the preconditioners developed for general optimization
problems are not useful

Solving the KKT system - iterative methods and
preconditioners

Solve Lyy Lyu c>y
L>yu Luu c>u
cy cu O

sy

su

sλ

 = rhs

Using some Krylov method (MINRES, SYMQMR, GMRES, ...)

Indefinite

Highly ill-conditioned

A must: Preconditioner

Many of the preconditioners developed for general optimization
problems are not useful

Solving the KKT system - iterative methods and
preconditioners

Lyy Lyu c>y
L>yu Luu c>u
cy cu O

sy

su

sλ

 = rhs

Preconditioners based on the approximate reduced Hessian method H.

& Ascher 2001, Biros & Ghattas 2005

Preconditioners based on the reduced Hessian method

 cy O cu

Lyy c>y O
O cu Luu

−1

≈

ĉ−1
y O −ĴH−1

r

O ĉ−>y −ĉ−>y ĴĤ−1
r

O O Ĥ−1
r

 ·
 I O O

ĉ−1
y I O

−Ĵ>ĉ−1
y −Ĵ> I



Ĵ = ĉ−1
y cu

Ĥr =??

Preconditioners based on the reduced Hessian method

0@ cy O cu
Lyy c>y O
O cu Luu

1A−1

≈

0B@bc−1
y O −bJH−1

r
O bc−>y −bc−>y

bJbH−1
r

O O bH−1
r

1CA ·
0B@ I O Obc−1

y I O
−bJ>bc−1

y −bJ> I

1CA

Approximating cy and Hr

ĉy - standard PDE approximation

Ĥr - BFGS, other QN, approximate inverse, ...

Can prove mesh independence under some assumptions

Other Preconditioners

Other approaches

Domain Decomposition, [Heinkenschloss 02]

Augmented Lagrangian, [Greif & Golub 03]

Schur complement based

See excellent review paper by Benzi
Everything you wanted to know about KKT systems but was
afraid to ask

No magic bullet, application dependent (as they should be!)

Taking a step

min J (y, u) s.t c(y, u) = 0

Guess u0, y0
while not converge

Evaluate Jk, ck, ∇Lk, cy, cu and an approximation to the Hessian
(the KKT system)

Approximately solve the KKT system for a step

Take a (guarded) step

Check if need to project to the constraint

Questions

while not converge

Evaluate Jk, ck,∇Lk, cy, cu and an approximation to the Hessian (the
KKT system)
How accurate should the Hessian/Jacobian be?

Approximately solve the KKT system for a step
To what tolerance?

Take a (guarded) step
How should we judicially pick a step?

Check if need to project to the constraint
why and when should we project?

Questions

while not converge

Evaluate Jk, ck,∇Lk, cy, cu and an approximation to the Hessian (the
KKT system)
How accurate should the Hessian/Jacobian be?

Approximately solve the KKT system for a step
To what tolerance?

Take a (guarded) step
How should we judicially pick a step?

Check if need to project to the constraint
why and when should we project?

Questions

while not converge

Evaluate Jk, ck,∇Lk, cy, cu and an approximation to the Hessian (the
KKT system)
How accurate should the Hessian/Jacobian be?

Approximately solve the KKT system for a step
To what tolerance?

Take a (guarded) step
How should we judicially pick a step?

Check if need to project to the constraint
why and when should we project?

Questions

while not converge

Evaluate Jk, ck,∇Lk, cy, cu and an approximation to the Hessian (the
KKT system)
How accurate should the Hessian/Jacobian be?

Approximately solve the KKT system for a step
To what tolerance?

Take a (guarded) step
How should we judicially pick a step?

Check if need to project to the constraint
why and when should we project?

How well should we solve the KKT system?

treat the problem as a system of nonlinear equations we can use
inexact Newton’s theory - ignore optimization aspects

for traditional SQP algorithms require accurate solutions

Can we use SQP with inaccurate solution of the sub-problem?
Leibfritz & Sachs 1999, Heinkenschloss & Vicente 2001

Recent work by Curtis Nocedal and Bird on inexact SQP
methods, based on a penalty function

Choosing a step

The dilemma

Should I decrease the Objective?

Should I become more feasible?

Choosing a step

merit function approach: Lµ = f (y, u) + µh(c(y, u))
Use the L1 or L2 merit functions

Disadvantage - need an estimate of the Lagrange multipliers

Choosing a step

Filter Fletcher & Leyffer 2002

either reduce the objective or

improve feasibility

No need for Lagrange multipliers

Projecting back to the constraint

In most cases feasibility is much more important than optimality

Project the solution when getting close or before termination

Can help with convergence (secondary correction)

Projecting back to the constraint

In most cases feasibility is much more important than optimality

Project the solution when getting close or before termination

Can help with convergence (secondary correction)

Projecting back to the constraint

In most cases feasibility is much more important than optimality

Project the solution when getting close or before termination

Can help with convergence (secondary correction)

Projecting back to the constraint - beyond optimization

Accuracy of the optimization can be low

Accuracy of the PDE should be high

When should we project?

Multilevel

Multilevel approach is computational effective

In many cases, avoid local minima

Help choosing parameters (e.g regularization, interior point)

Hard to prove

Grid Sequencing

The problems we solve have an underline continuous structure.
Use this structure for continuation

Main idea: Solution of the problem on a coarse grid can approximate the
problem on a fine grid.

Use coarse grids to evaluate parameters within the optimization. Móre , Burger,

Ascher & H., H. & Modersitzki, H., H. & Benzi

Adaptive Multilevel Grid Sequencing
Rather than refine everywhere, refine only where needed H., Heldman

& Ascher [07], Bungrath [08]

Requires data structures, discretization techniques, refinement
techniques
Can save an order of magnitude in calculation

Examples
And this is how its really done Dora the explorer

Application: Impedance Tomography

Joint project with R. Knight and A. Pidlovski, Stanford Environmental Geophysics Group

Application: Impedance Tomography

Application: Impedance Tomography

Application: Impedance Tomography

The mathematical problem

The constraint (PDE)

c(y, u) = ∇× µ−1∇× y− iωσy = iωsj j = 1...k

(with some BC)

The Objective function

min
1
2
‖Q(y− yobs)‖2︸ ︷︷ ︸

misfit

+ α︸︷︷︸
regpar

regularization︷︸︸︷
R(u)

Discretization - I

Discretization - II

Discretization

use 128× 128× 64 cells
of states = k ×# of controls

In practical experiments k ≈ 10− 1000

The discrete mathematical problem

The constraint (PDE)

ch(yh, uh) = A(uh)yh − qh = DTS(uh)Dyh − qh = 0

The Objective function

min
1
2
‖Q(yh − yobs)‖2︸ ︷︷ ︸

misfit

+ α︸︷︷︸
regpar

regularization︷ ︸︸ ︷
R(uh)

The Data - 63 sources

The Inversion

Application - Image Registration
Joint work with S. Heldmann and J. Modesitzki, Lübeck, Germany

min
1
2
‖y(T)− R‖2 +

1
2
αS(u)

s.t yt + u>∇y = 0 y(0) = y0

Example - ML

Example - ML

Example - ML

Example - ML

Example - ML

Model Problems
Sometimes, you can learn a lot from small things Thomas the engine

Goal

PDE optimization problems are difficult to implement

Suggest some simple model problems we can experiment with

Develop optimization algorithms, preconditioners, grounded to
reality

Will not cover all PDE-optimization problems but not all PDE’s
are Poisson equation either

Much of the development in PDE’s was motivated by the 5 point
stencil!

The problems/implementation

Parameter identification problems

Assume smooth enough problems (discretize optimize not a
problem)

Consider elliptic, parabolic and hyperbolic problems

Use regular grids and finite difference/volume for simplicity

Code in matlab

Modular, BYOPC (bring your own preconditioner)

The problems

The PDE’s

Elliptic
∇ · expu∇y− q = 0; n · y = 0

Parabolic

yt −∇ · expu∇y = 0; n · y = 0; y(x, 0) = y0

Hyperbolic

yt −~u>∇y = 0; n · y = 0; y(x, 0) = y0

The code

Download:
http://www.mathcs.emory.edu/ haber/code.html

Very simple to get started (matlab demo ...)

Takes some time to run, elliptic problem on n3 grid has
6n3 + n3 + 6n3 variables

Outline/Summary

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Outline/Summary

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Outline/Summary

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Outline/Summary

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Outline/Summary

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Outline/Summary

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Outline/Summary

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

	Multilevel

