
Simulation based Optimization

Eldad Haber

August 18, 2008



Goals

PDE optimization problems can be very involved.

Try to explain the essence and possible pitfalls

Encourage you to get into this cool! field

Give some simple software to demonstrate these concepts



Outline

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Matlab Code



Outline

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Matlab Code



Outline

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Matlab Code



Outline

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Matlab Code



Outline

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Matlab Code



Outline

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Matlab Code



Outline

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Matlab Code



Outline

Introduction

Difficulties and PDE aspects

The optimization framework

Solving the KKT system

Optimization algorithms

Examples

Summary and future work

Matlab Code



Simulation and Optimization

The (continuous) problem:

min J (y, u)
subject to c(y, u) = 0

u ∈ U model - control
y ∈ Y field - state
J : [U × Y]→ R1

c : [U × Y]→ Ŷ



Simulation and Optimization

The (discrete) problem:

min J (y, u)
subject to c(y, u) = 0

u ∈ Rn model - control
y ∈ Rm field - state
J : Rm+n → R1

c : Rm+n → Rm



Example I

Seismic inversion Clerbout 2000

min J =
1
2

∑
i

‖Qjyj − d‖2 +
α

2
‖Lu‖2

s.t. c(yj, u) = ∆hyj + k2u� yj = 0 j = 1, . . . ns



Example II
Electromagnetic inversion Newman 1996

min J =
1
2

∑
j

‖Qjyj − d‖2 +
α

2
‖Lu‖2

s.t. c(yj, u) = (∇× µ−1∇× )hyj + iωS(u)yj = 0 j = 1, . . . , ns



Example III

Image Processing - transprot Modersitzki 2003

min J =
1
2
‖y(T, x)− d(x)‖2 + αS(u)

subject to yt + u>∇y = 0 y(0, x) = y0(x)



Example IV

Shape Optimization Haslinger & Makinen 2003

min J = g(y)
subject to c(y, u) = ∆hy− f (u) = 0



Some Historical Prespective

Optimization with O/PDE constraint is common practice in many
applications for many years

Geophysical inversion for conductivity (Schlumberger 1912)

Other fields: Flow design, VLSI, trajectory planning, chemical
reaction control, ... (starting in the 30’s and on)

However,

better computer architecture→ larger simulations

development in numerical PDE’s→ complex models

New optimization algorithms are needed



Some Historical Prespective

Optimization with O/PDE constraint is common practice in many
applications for many years

Geophysical inversion for conductivity (Schlumberger 1912)

Other fields: Flow design, VLSI, trajectory planning, chemical
reaction control, ... (starting in the 30’s and on)

However,

better computer architecture→ larger simulations

development in numerical PDE’s→ complex models

New optimization algorithms are needed



Some Historical Prespective

Optimization with O/PDE constraint is common practice in many
applications for many years

Geophysical inversion for conductivity (Schlumberger 1912)

Other fields: Flow design, VLSI, trajectory planning, chemical
reaction control, ... (starting in the 30’s and on)

However,

better computer architecture→ larger simulations

development in numerical PDE’s→ complex models

New optimization algorithms are needed



Some Historical Prespective

Optimization with O/PDE constraint is common practice in many
applications for many years

Geophysical inversion for conductivity (Schlumberger 1912)

Other fields: Flow design, VLSI, trajectory planning, chemical
reaction control, ... (starting in the 30’s and on)

However,

better computer architecture→ larger simulations

development in numerical PDE’s→ complex models

New optimization algorithms are needed



Before we do anything
All you got to do is think Pooh Bear



Our framework: Discretize-Optimize

min J (y, u) s.t c(y, u) = 0

Optimize-Discretize: Can yield inconsistent gradients of the objective
functionals. The approximate gradient obtained in this way is not a true
gradient of anything–not of the continuous functional nor of the discrete
functional.

Discretize-Optimize Requires to differentiate computational facilitators
such as turbulence models, shock capturing devices or outflow boundary
treatment.
M. Gunzburger

Want to use the wealth of optimization algorithms



Simulation and Optimization

Need to discretize the PDE (constraint)

Parameters change - modeling need to be flexible

Need to optimize - derivatives



Discretizing c(y, u) = 0 - difficulties

Stability with respect to parameters

c(y, u) = yt − uyxx

Explicit vs Implicit

Explicit:

ch(yh, uh) = yn+1
h − yn

h − uh �
δt
δx2 Lyn

h = 0



Discretizing c(y, u) = 0 - difficulties

Stability with respect to parameters

Stability requires uhδt ≈ δx2

do not know u→ hard to guarantee stability.

Code has to make sure discretization is compatible

Possible solution: implicit methods are unconditionally stable



Discretizing c(y, u) = 0 - difficulties

Stability with respect to parameters

c(y, u) = yt − uyxx

Explicit vs Implicit

Implicit:

ch(yh, uh) = yn+1
h − yn

h − uh �
δt
δx2 Lyn+1

h = 0

No free lunch, need to invert a matrix



Discretizing c(y, u) = 0 - difficulties

Differentiability of the discretization

c(y, u) = εyxx + uyx = 0

Common discretization, upwind

ε

h2 (yj+1 − 2yj + yj−1) +

1
h

(max(uj, 0)(yj − yj−1) + min(uj, 0)(yj+1 − yj)) = 0



Discretizing c(y, u) = 0 - difficulties

The continuous problem is continuously differentiable w.r.t u

εyxx + uyx = 0

The discrete problem is not differentiable w.r.t uh

ε

h2 (yj+1 − 2yj + yj−1) +

1
h

(max(uj, 0)(yj − yj−1) + min(uj, 0)(yj+1 − yj)) = 0

Even more difficult for flux limiters



Discretizing c(y, u) = 0 - difficulties

The continuous problem is continuously differentiable w.r.t u but
discrete problem is not

εyxx + uyx = 0

No magic solution for this one - can pose real difficulty for the DO
approach



Discretizing c(y, u) = 0 - difficulties

Nonlinearity of the discretization
”the mother of all elliptic problems” Dendy 1991

−∇ · (u∇y) = q

Finite volume discretization

A(uh)yh =

−∇·︷︸︸︷
D> diag (N(uh))︸ ︷︷ ︸

u

∇︷︸︸︷
D yh = qh

where N(uh) = (Avu−1
h )−1 harmonic averaging

The continuous problem is bilinear but discrete problem is more
nonlinear.



Discretizing c(y, u) = 0 - difficulties

Nonlinearity of the discretization
”the mother of all elliptic problems” Dendy 1991

−∇ · (u∇y) = q

Finite volume discretization

A(uh)yh =

−∇·︷︸︸︷
D> diag (N(uh))︸ ︷︷ ︸

u

∇︷︸︸︷
D yh = qh

where N(uh) = (Avu−1
h )−1 harmonic averaging

The continuous problem is bilinear but discrete problem is more
nonlinear.



Discretizing c(y, u) = 0 - difficulties

Nonlinearity of the discretization

−∇ · (u∇y) = q

Finite volume discretization

A(uh)yh =

−∇·︷︸︸︷
D> diag (N(uh))︸ ︷︷ ︸

u

∇︷︸︸︷
D yh = qh

Differentiate the discrete approximation rather than the
continuous one



Before we solve

PDE optimization problems are different because PDE’s are
different

To make progress need to classify them. Use similar tools for
similar problems

Need good model problems to experiment with



Discretization - summary

Classify PDE’s using 2 categories

PDE’s that are smooth enough such that the DO approach works
well

PDE’s that require special attention in their discretization, need
OD

Although we look at the PDE through the discretization these
properties are intrinsic to the PDE itself



Discretization - summary

Classify PDE’s using 2 categories

Smooth PDE’s such that the DO approach works well
Elliptic problems
Parabolic problems
Smooth hyperbolic problems
Some nonlinear problems

PDE’s require special attention in their discretization, need OD
Hyperbolic problems with nonsmooth initial data
Nonlinear problems with shocks
Other Nonlinear problems e.g, Eikonal and alike



Accuracy issues

For many problems, constraint must be taken seriously (physics)
but the optimization less so (noise, regularization)

In many cases the control-model change little after the first
reduction of the objective function

Example:

min ‖u− b‖2 + αTVε(u)
s.t ∇ · u∇y = q

where

TVε(t) =
{ 1

2ε t2 + ε
2 |t| ≤ ε

|t| |t| > ε



Accuracy issues

Example:

min ‖u− b‖2 + αTVε(u)
s.t ∇ · u∇y = q

ε = 100



Accuracy issues

Example:

min ‖u− b‖2 + αTVε(u)
s.t ∇ · u∇y = q

ε = 10−1



Accuracy issues

Example:

min ‖u− b‖2 + αTVε(u)
s.t ∇ · u∇y = q

ε = 10−2



Optimization
Can we build it? Yes we can! Bob the builder



Solving the optimization problem

Constrained approach, solve

min J (y, u)
subject to c(y, u) = 0

Unconstrained approach, eliminate y to obtain

min J (y(u), u)



Constrained vs. unconstrained

Example: c(y, u) = A(u)y− q = 0
Constrained approach,

min J (y, u)
subject to A(u)y = q

Unconstrained approach,

min J (A(u)−1q, u)

Invertibility of A(u)
Cost of evaluating the ObjFun.



Constrained vs. unconstrained

Example: c(y, u) = A(u)y− q = 0
Constrained approach,

min J (y, u)
subject to A(u)y = q

Unconstrained approach,

min J (A(u)−1q, u)

Invertibility of A(u)
Cost of evaluating the ObjFun.



Constrained vs Unconstrained

Constrained approach,

Saddle point problem

Algorithmically hard

No need to solve the constraints until the end

Unconstrained approach

Simple from an optimization standpoint

Need to solve the constraint equation PDE

Becomes even messier for nonlinear PDE’s

But: always feasible!!!



Constrained vs Unconstrained



Sequential Quadratic Programming

The Lagrangian
L = J (y, u) + λ>Mc(y, u)

where
λ>Mc(y, u) ≈

∫
Ω
λ(x)c(y(x), u(x)) dx

Differentiate to obtain the Euler Lagrange equations (Assume M = I)

adjoint Jy + c>y λ = 0

state Ju + c>u λ = 0

constraint c(y, u) = 0



Computing Jacobians

Need to compute cy, cu

In many cases cy available (used for the forward)

Need to compute cu, calculus with matrices helps

In some cases cy not used for the forward



Jacobians, example I:Hydrology, electromagnetics

c(y, u) = A(u)y− q = D>diag((Avu−1)−1)Dy− q

Then

cy = A(u)

cu =
∂

∂u

[
D>diag((Avu−1)−1)Dy

]
Note that

D>diag((Avu−1)−1)Dy = D>diag(Dy) (Avu−1)−1

therefore

cu = D>diag(Dy) diag((Avu−1)−2)Avdiag(u−2)



Jacobians, example II : CFD

NS equations

∆hy + M(y)y +∇hp = u

∇h · yk = 0

Where M(y) ≈ ∇y
Typical solution through fixed point iteration [Elman, Silvester, Wathen]

∆hyk + M(yk−1)yk +∇hp = u

∇h · yk = 0

Thus to compute c(y) need extra calculation



Jacobians, example II : CFD

In general

c(y, u) = 0

Use some iteration to solve (not Newton’s method)
From an optimization theory we need the Jacobians cy, cp of the
constraint otherwise cannot guarantee convergence

Open Question: Can we get away with less?



Two alternative viewpoints

adjoint Jy + c>y λ = 0

state Ju + c>u λ = 0

constraint c(y, u) = 0

A system of nonlinear PDE’s Necessary conditions
use PDE techniques use optimization framework

(MG, FAS, ...) (reduce Hessian ...)
MG(linear)

MGOPT [Luis & Nash]



Two alternative viewpoints

A system of nonlinear PDE’s Necessary conditions
use PDE techniques use optimization framework

(MG, FAS, ...) (reduce Hessian ...)

Our approach:
Use PDE techniques as solvers
Use optimization methods for a guide



Two alternative viewpoints

A system of nonlinear PDE’s Necessary conditions
use PDE techniques use optimization framework

(MG, FAS, ...) (reduce Hessian ...)

Our approach:
Use PDE techniques as solvers
Use optimization methods for a guide



Solving the Euler Lagrange equations

adjoint Jy + c>y λ = 0

state Ju + c>u λ = 0

constraint c(y, u) = 0

Approximate the Hessian and solve at each iteration the KKT systemLyy Lyu c>y
L>yu Luu c>u
cy cu O

sy

su

sλ

 = rhs



Solving the Euler Lagrange equations

In many applications approximate the Hessian byJyy O c>y
O Juu c>u
cy cu O

sy

su

sλ

 = rhs

Gauss-Newton SQP [Bock 89]

If Jyy and Juu are positive semidefinite then the reduced Hessian is
likely to be SPD.


