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Introduction to Nonlinear Optimization

Nonlinear Programming (NLP) problem

(P)

{
minimize

x
f (x) objective

subject to c(x) ≥ 0 constraints

... c(x) = 0 are easy. Inequalities more powerful modeling paradigm.

• f : Rn → R, c : Rn → Rm smooth (typically C2)

• x ∈ Rn finite dimensional (may be large)

• more general l ≤ c(x) ≤ u possible

Introduce slacks s = c(x), s ≥ 0 and write as (re-define x)

(P) minimize
x

f (x) subject to c(x) = 0, x ≥ 0.
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Solving Nonlinear Optimization Problems

(P) minimize
x

f (x) subject to c(x) ≥ 0

Main ingredients of iterative solution approaches:

1. Local Method: Given xk (solution guess) find a step s.
• Local problem should be easier to solve than (P).
• Ensure fast (quadratic) local convergence.
• Connection to global convergence ...

2. Forcing Strategy: Global convergence from remote starting points.

3. Forcing Mechanism: Truncate step s to force progress:
• Trust-region to restrict s of local problem ... used in this talk.
• Back-tracking line-search along step s.
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Trust Region Methods

Unconstrained f (x) minimization by trust-region

minimize
s

qk(s) := f (xk) +∇f (xk)T s +
1

2
sTH(xk)s subject to ‖s‖ ≤ ∆k
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Trust-Region Framework for Nonlinear Optimization

Nonlinear optimization problem

minimize
x

f (x) subject to c(x) ≥ 0

Given x0 starting point, set k = 0
REPEAT

1. solve trust-region problem around xk for step s

2. IF xk + s improves on xk THEN
accept step: xk+1 = xk + s

else reject step: xk+1 = xk

3. k = k + 1 & house-keeping

UNTIL convergence
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Active-Set Methods
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Sequential Quadratic Programming ' Newton

Nonlinear optimization problem

minimize
x

f (x) subject to c(x) ≥ 0

... linear model of constraints, quadratic model of objective:
minimize

s
gk

T s + 1
2sTHks := qk(s)

subject to ck + Ak
T s ≥ 0 yk ≥ 0

‖s‖∞ ≤ ∆k trust-region

where yT
k (ck + Ak

T s) = 0, complementarity.
Function gradient: gk = ∇f (xk),
Jacobian matrix: Ak = ∇c(xk)T ,
Hessian matrix: Hk = ∇2L(xk , yk) = ∇2f (xk)−

∑
[yk−1]i∇2ci (xk).
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Main Computational Effort of SQP Method

At every iteration SQP solves QP by active-set:

minimize
s

gT s +
1

2
sTHs subject to AT s ≥ −c

Sequence of equality QPs ' augmented systems (add/delete row/col)

1. determine new A estimate of QP active set

2. update sparse basis factors of [AA : V ]−1 =

[
Y T

ZT

]
3. update factors of dense reduced Hessian: ZTHZ bottleneck!

... can replace dense reduced Hessian factors by CG.

4. perform two solves with [AA : V ] and one with ZTHZ
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Sequential Linear/Quadratic Programming

Nonlinear optimization problem

minimize
x

f (x) subject to c(x) ≥ 0

“Decompose” QP step into two steps:

1. LP model (∃ fast solvers) ... solve for sLP step:

minimize
s

gT
k s subject to ck + AT

k s ≥ 0, ‖s‖∞ ≤ ∆k

... to estimate active set A = {i : ci + aT
i sLP = 0}

2. equality constrained QP with A:,A full rank

(EQP)

[
H −A:,A
AT

:,A

](
s

yA

)
=

(
−g
−cA

)
... for fast local convergence (Newton) ... + inertia control?
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Active-Set Identification by SLP

Polyhedral trust-region makes LP warm-starts inefficient

minimize
s

gT s

subject to c + AT s ≥ 0
‖s‖∞ ≤ ∆k trust-region

Practical Experience with SLIQUE

• Active constraints c + AT s ≥ 0 settle down

• Many changes trust-region bounds ‖s‖∞ ≤ ∆k

⇒ LP solvers slow, even near solution
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Regularized LP Subproblems

A simple idea: penalize `2 trust-region ⇒ lift into objective ...

minimize
s

µ

gT s + π 1
2sT s

subject to c + AT s ≥ 0

Proximal point term π 1
2sT s

becomes µ = π−1

Dual of TR problem ... ∇sL = µg + s − Ay = 0 eliminate s

minimize
y

1
2yTATAy − (c − µATg)T y + µ2

2 gTg

subject to y ≥ 0

... bound constrained quadratic problem: ∃ matrix-free solvers ...
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Projected Gradient CG for Bound Constraints

Dual of regularized LP:

minimize
y

q(y) subject to y ≥ 0

... bound constrained quadratic
Projected gradient P[x − α∇q(y)]
piecewise linear path
... large changes to A-set
... but slow (steepest descent)

After each steepest descent step, minimize q(y) on face (Ak)
⇒ CG on inactive variables (yi > 0)
... CG for ATA, where A is sparse, may be rank-deficient.
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Performance Profile: Active-Set Identification

... encouraging ...
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Interior-Point Methods
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Modern Interior Point Methods (IPM)

General NLP (with slacks)

minimize
x

f (x) subject to c(x) = 0 & x ≥ 0

Perturbed µ > 0 optimality conditions (x , z > 0)

Fµ(x , y , z) =


∇f (x)−∇c(x)T y − z

c(x)
Xz − µe

 = 0

• Primal-dual formulation, where X = diag(x)

• Central path {x(µ), y(µ), z(µ) : µ > 0}
• Apply Newton’s method for sequence µ↘ 0
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Modern Interior Point Methods (IPM)

Newton’s method applied to primal-dual system ... ∇2Lk −Ak −I
AT

k 0 0
Zk 0 Xk

 ∆x
∆y
∆z

 = −Fµ(xk , yk , zk)

where Ak = ∇c(xk)T , Xk diagonal matrix of xk .

• Polynomial run-time guarantee for convex problems

• Need µ↘ 0 to converge nonlinear optimization
⇒ systems becomes more ill-conditioned O(µ−1)
... want higher accuracy for smaller µ

• Constraint preconditioners avoid ill-conditioning
... other techniques aim to identify active constraints
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Classical Interior Point Methods (IPM)

minimize
x

f (x) subject to c(x) = 0 & x ≥ 0

Related to classical barrier methods [Fiacco & McCormick]{
minimize

x
f (x)− µ

∑
log(xi )

subject to c(x) = 0

µ = 10 µ = 1

minimize x2
1 + x2

2 subject to x1 + x2
2 ≥ 1
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Enforcing Convergence
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When’s a New Point Better?

Easy for unconstrained minimize f (x) (quadratic model qk(s)):

xk+1 = xk + s better, iff f (xk+1) ≤ f (xk)− 10−4qk(s)

... actual reduction matches portion of reduction predicted by model.

Unclear for constrained problem: c−(x) := max (0,−c(x))

• step s can reduce both f (x) and ‖c−(x)‖ GOOD

• step s increases f (x) and decreases ‖c−(x)‖ ???

• step s decreases f (x) and increases ‖c−(x)‖ ???

• step s can increase both f (x) and ‖c−(x)‖ BAD

Sven Leyffer 22 of 38



Penalty Functions

(P) minimize
x

f (x) subject to c(x) ≥ 0

Penalty function simplifies acceptance: c−(x) := max (0,−c(x))

(Pπ) minimize
x

Φ(x , π) = f (x) + π‖c−(x)‖1

where π > 0 sufficiently large penalty parameter.

Theorem: If π > ‖y∗‖∞ then (P)⇔ (Pπ), where y∗ optimal multipliers.

Classical penalty approach: πk = ‖yk‖∞ + 1 for yk ' y∗ multipliers.
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Penalty Functions & Methods

Modern penalty approach:

• Ensure π large enough to give descend of quadratic model:

qπ(s) = fk +∇f T
k s +

1

2
sTHks + π‖(ck + AT

k s)−‖1

... require qπ(0)− qπ(s) ≥ ε
(
‖c−k ‖1 − ‖(ck + AT

k s)−‖1
)

• Equivalent to ...

πk ≥
gT
k s + σ

2 sTHks

(1− ε)
(
‖c−k ‖1 − ‖(ck + AT

k s)−‖1
)

where σ = 1 iff sTHks > 0, and σ = 0 else.

• Make sure that denominator 6= 0 ... threshold parameter.

• Works better than classical approach.
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`1 Exact Penalty Function & Maratos Effect

minimize
x

Φ(x , π) = f (x) + π‖c−(x)‖1

where c−(x) := max (0,−c(x)) constraint violation

• Φ nonsmooth, but equivalent to smooth problem

• Penalty parameter not known a priori: π > ‖y∗‖∞
• Large penalty parameter ⇒ slow convergence; inefficient

Maratos effect motivates second-order correction steps
Sven Leyffer 25 of 38



Filter Methods to Promote Convergence

Penalty function combines two competing aims:

1. Minimize f (x)

2. Minimize h(x) := ‖c−(x)‖ ... more important

Borrow concept of domination from
multi-objective optimization

(hk , fk) dominates (hl , fl)
iff hk ≤ hl & fk ≤ fl

i.e. xk at least as good as xl
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Filter Methods to Promote Convergence

Filter F : list of non-dominated pairs (hl , fl)

• new xk+1 acceptable to filter F ,
iff

1. hk+1 ≤ hl ∀l ∈ F , or
2. fk+1 ≤ fl ∀l ∈ F

• remove redundant entries

• reject new xk+1,
if hk+1 > hl & fk+1 > fl
& reduce trust region ∆ = ∆/2

⇒ often accept new xk+1, even if penalty function increases
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Filter vs. Penalty

... quite similar, luckily filter still wins!
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Maratos Effect in Filter Methods

Filter methods suffer Maratos Effect:

minimize 2(x2
1 + x2

2 − 1)− x1

subject to x2
1 + x2

2 − 1 = 0

SQP step near x0 near (1, 0) increases objective & constraints:
f1 > f0 and h1 > h0 Newton step rejected by filter
⇒ need second-order correction (SOC) steps

SOC steps are cumbersome ... can we avoid them?

Idea: Use non-monotone filter ... generalizes standard filter.
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Funnel for Optimization

Predates filter methods (tube); recently see [Gould & Toint, 2007]
Idea: accept step that does not deteriorate max. infeasibility

• initialize tube as
U = max{1.25‖c(x0)−‖, 100}

• accept xk+1, if ‖c(xk+1)−‖ < U

• if no sufficient f -reduction, then
U = max {0.9U,U − 0.1ared},
where
ared = max

{
10−4, hk − hk+1

}
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Filter vs. Tube

... very similar, but tube is easier!
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Sometimes Things Go Badly Wrong!

1. exception handling
• floating point (IEEE) exceptions

from function evaluations
• unbounded problems:

f (x)→ −∞ for c(x) ≥ 0

2. only get local solutions or stationary point
global optimization hard for 100 vars

• (locally) inconsistent problems
• suboptimal, or only stationary

... sometimes ignored by optimization community ...
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Locally Inconsistent Problems

NLP may have no feasible point
... need to detect this quickly, e.g. mixed-integer problems

feasible set: intersection of circles

• Any point on red line “proofs” local infeasibility

• Jacobian of two constraints is linearly dependent

Can we identify infeasibility quickly?
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Locally Inconsistent Problems

Local QP/LP approximation inconsistent:{
s : ck + AT

k s ≥ 0, and ‖s‖ ≤ ∆k

}
= ∅

Formulate feasibility problem:

1. Divide constraints into infeasible I and rest Ic

I :=
{

i : ci + aT
i s < 0

}
2. Minimize infeasibility subject to remaining constraints minimize

x

∑
i∈I

(
−aT

i s
)
− sT Ĥs/2

subject to ci + aT
i s ≥ 0, ∀i ∈ Ic

where Ĥ =
∑

yi∇2ci Hessian of constraints.

3. Switch between feasibility restoration & optimization.

Observe fast (quadratic) local convergence.
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Online Optimization Tools

• NEOS server: web-based solvers
http://www-neos.mcs.anl.gov/

• NEOS guide & wiki: information
http:
//www-fp.mcs.anl.gov/OTC/Guide/
http://wiki.mcs.anl.gov/NEOS/

• TAO: toolkit for advanced optimization
http://www.mcs.anl.gov/tao/
Parallel optimization using PETSc

• COIN-OR project: open-source solvers
http://www.coin-or.org/
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Conclusions & Future Work

Optimization has more & cooler acronyms than Linear Algebra!
FASTr: Flexible Active-Set Trust-Region Framework

• Local methods (step computation)
• sequential quadratic programming (SQP)
• sequential linear/quadratic programming (SLQP)
• sequential regularized LP/QP matrix free possible (RLQP)

Solvers: BQPD (Fletcher), Clp (COIN-OR), MA57 (Harwell)

• Forcing Strategy (step acceptance)
• penalty function
• filter methods as alternative to penalty functions
• non-monotone filter ... avoid Maratos effect???
• tolerance tube: easier than filter; almost as efficient

• future developments
• more subproblem solvers: LP/QP/EQP (PARDISO, SCIP for LP)
• heuristics for nonlinear optimization
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Mixed-Integer Nonlinear Program (MINLP)

... but MINLP also stands for

Most Interesting Nincompoops Love Pabst
Mostly Irrelevant Nonsense and Ludicrously Pompous
Monumental Imbibing Now Lauded Posthumously
Masters of Impudent Nepotistic Lies and Prevarications
Multiple Injury Nobbles Lonely Person
Mission Impossible Needs Loads of Patronage
Mission Impossible Nearing Limitless Perfection
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See ya at the Victoria!
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