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0 Introduction
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% Model reduction: General framework

Physical system

7N
Modelling Modelling
1 l
ODEs —— semidiscr. PDEs

1

Mod. reduction
1

Reduced ODE — Sim., Control
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% Control methods

> Semidiscretization in space using FVM, FEM, FDM — large
scale ODE/DAE-control problem.

> Model reduction to reduce state dimension.

> Computation of control for reduced model using standard
software such as SLICOT

> Application of computed control in large semidiscretized
model or infinite dimensional model.

> Inequality or equality constraints are included in outer loop
(SQP, Newton).

Model reduction 4/53



Semidiscretized control problem

F(t,x,x,u) = 0, x(b)=xo

state x € R”,
control u € R™,
output y € RP,

n, the number of discretization points (elements) in space is
large.

> m,p<<n

v Vv Vv V
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% Model reduction

Replace system

F(t,x,x,u) = 0, x(b)=xo
y(t) = g(x)
with x € R”, u € R™, and y € RP, by a reduced model

Ft,x,%u) = 0, %(t)=5%
y() = 9(X)

with X € R, i << n.

Goals
> Approximation error small, global error bounds
> Preservation of physics: stability, passivity, conservation laws

> Stable and efficient method for model reduction.



e Applications
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&y Drop size distributions in stirred systems

with M. Kraume from Chemical Engineering (S. Schlauch/Schmelter)
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Ly Technological Application, Tasks

Chemical industry: pearl polymerization and extraction
processes
> Modelling of coalescence and breakage in turbulent flow.

> Numerical methods for simulation of coupled system of
population balance equations/fluid flow equations.

> Development of optimal control methods for large scale
coupled systems

> Model reduction and observer design.
> Feedback control of real configurations via stirrer speed.
Ultimate goal: Achieve specified average drop diameter and

small standard deviation for distribution by real time-control of
stirrer-speed.
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Ly Mathematical system components

> Navier Stokes equation (flow field)

> Population balance equation (drop size distribution).
> One or two way coupling.

> Initial and boundary conditions.

Space discretization leads to an extremely large control system
of nonlinear DAEs.
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Active flow control with F. Troltzsch, M. Schmidt

Navier—Stokes equations (3|
+ boundary conditions

speaker @ﬂ #_ .

input output
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Ly Technological Application, Tasks

Control of detached turbulent flow on airline wing

> Test case (backward step to compare experiment/numerics.)
> Modelling of turbulent flow.

> Development of control methods for large scale coupled
systems.

> Model reduction and observer design.

> Optimal feedback control of real configurations via blowing
and sucking of air in wing.

Ultimate goal: Force detached flow back to wing.
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@ Model reduction techniques
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Ly Model reduction techniges

SVD (singular value decomposition) based methods
> Balanced truncation (linear) Antoulas, Benner, Li, Moore,
Penzl, Stykel, Sorensen, Varga, Wang, White, ...

> Hankel approximation: (linear) Adamjan, Anderson, Arov,
Glover, Liu, Krein, ...

> Principal orthogonal decomposition (POD), (nonlinear) Banks,
Hinze, King, Kunisch, Volkwein, ...

Krylov methods

> Pade’ via Lanczos (moment matching) (linear) Boley, Freund,
Gallivan, Gragg, Grimme, Jaimoukha, Kasenally, Van
Dooren, ...

Books by Antoulas, 2005, Benner/M./Sorensen, 2005



%y Proper Orthogonal Decomposition (POD)

x=f(t,x,u) = 0, x(b)=xo
y() = g(x)

> Consider snapshots for some control u.
> Determine (by solving the system)

X =[x(t) x(&) ... x(t)]

> SVD X = UNZNVIZI- ~ UﬁZﬁVhT
> Truncate small singular values n << n
> Reduced system

%= UTH(t, Usk,u) = 0



Ly Analysis of POD

> Cheap and easy to use.

> ‘Works’ for nonlinear systems.

> Successful in practice.

> How to choose u(t) for snapshots?

> Quite heuristic. Pure data compression.

> Little theory, Beattie, Kunisch/Volkwein, Trdltzsch.
> No preservation of physical properties.
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Linear control systems

Replace

x(t) = Ax(t)+ Bu(t), x(t)=Xo
y(t) = Cx(t)

by

X(t) = Ax(t)+ Bu(t), X(t) =%
y(t) = Cx(1),

with X € R, i << n.
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Hy Distance of control systems

Laplace transformation and approximation in frequency domain.

y = C(sl-A"'Bi
G(s)0,

with rational matrix valued transfer function G(s) in Hardy space
of functions that are analytic and bounded in the right half of
complex plane.

IG — Gln.. = sup || G(iw) — G(iw)|

with / = v/—1 and approximate transfer function
G(s) = C(sl — A)~'B. (G(iw) : “frequency response matrix”)
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Ly Krylov methods

Moment matching, Pade’ via Lanczos
Expand the transfer function G(s) at point s

G(8) = My + My(s — sp) + Ma(s — 5p)% + . ..
and find approximate C, B, A so that in the expansion of
C(sl — A) "B = My + Mi(s — s0) + Ma(s — 50)% + . ..

as many terms as possible are matched.

> §g = oo: partial realization, Pade” approximation. Solution via
Lanzcos or Arnoldi method.

> S € C rational interpolation. Solution via rational Lanczos.
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Ly Analysis of Krylov Approach

> Fast and easy to use.

> Works for very large scale problems.

> Very successful in practice, VLSI simulation.
> Preservation of passivity, Sorensen 2002.

> Choice of s5?

> Computation of moments problematic.

> No global error bound.

> Breakdown of Lanczos.
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e Balanced truncation
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% Balanced truncation

x=Ax+ Bu, y=_Cx

Consider Lyapunov equations:

AXg + XgAT = —BBT (Xg controllab. Gramian)
ATXc+XcA = —C'C (X observab. Gramian).

> If Ais stable and the system is controllable and observable,
then Xg, X¢ are positive definite.

> ldea: Make the system balanced, Xz = X¢ diagonal, and
truncate small components.

> Every controllable and observable system can be balanced by
a change of basis X = Tx.
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Hy Balanced truncation algorithm

1. Compute Gramians and Cholesky fact. Xg = LgL],
Xc = LCL
2. Compute the SVD of UL VT = LLL; with

Y = diag(oy,...0p) = [21 %, ],

Y, = diag(ops1, .-+, 0n)s Ohst,-..,0n0 < tOI.
3. Set T=%"2U L' =2 "2VTLL.
4. Set x = Tx and partition matrices as X.

TAT-! — [A” A12],Tx:[§(],

Azi Az Xr
B _
B = [B;],CT1=[C1 C |

5. Reduced system 2% = A1X + Biu, y = CiX.



Ly Analysis of balanced truncation

> Very good approximation properties.
> Exact error estimates.

G — Gllp. = 2(csp1 + ... + o).

v

Stability is preserved. Passivity with modification
Energy interpretation.

In this form not feasible for large sparse problems from
semidiscretized PDEs.

Expensive to solve large scale Lyapunov equations.

However, the Lyapunov solution has fast decaying
eigenvalues.

v Vv

v Vv
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Ly Eigenvalue decay

Theorem (Penzl '00)

A stable, symmetric, condition number r. = k(A), m << n. Then
eigenvalues \j(X) of Lyapunov solution satisfy

2
Amer (X) _ (“ KB/ 1)

M (X) L erren 11

Extension to nonsymmetric case Antoulas et al, '01
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Example: Heat equation
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&y Low rank approx. of Lyapunov solutions

> We don’t need the solution of Lyapunov equations.
> We need the product of Cholesky factors LLLc.

> Since we truncate anyway, it suffices to have low rank
approximation of Cholesky factors

X=LLT ~LL",

where L is rectangular with few columns.

Iterative methods for the computation of low rank factors: Penzl
'99, Hackbusch/Khoromskij ‘00, Antoulas et al ‘05, Grasedyck
'01-’04, Li ’00, Gugercin ’06, Sorensen et al '01., A Benner 02,
Baur '08
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Ly ADI Method for Lyapunov equations

Wachspress ‘88, Reichel '92, Starke ‘91, Penzl '98
Consider
ATX + XA=W.

Split as forward
AT Xii10 + XiA=W
and backward solve
A X1/ + Xi1A= W

and iterate.

> We need sparse solver for Aand A’ and shifts of these.
> Convergence acceleration by shifts.
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Low rank ADI for Lyapunov

Low rank version of classical ADI (LR-ADI) Penzl ’00, Li 02,
Stykel '04
Consider

ATX + XA=BBT

lteration:

Zy = \/—2,01(A+,D1/)_1B
Z = [(A-piA+pD 'Z,

V=20(A+pl) B

p;’s are scalar shift parameters.
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Ly Analysis of method

LR-ADI computes sequence of rectangular Cholesky factors

s.t. Z,-ZjT — X.
> Size grows by min each step.

> Fixed storage version, Antoulas et al '01.
> Convergence analysis based on decay rates.
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Ky Low rank Smith

LR-Smith(/) Penzl '99 Efficient implementation of LR-ADI with
cyclic shifts.

> LR-ADI/LR-Smith(/). More reliable and accurate than Krylov
subspace techniques for Lyapunov equations
> Costs for LR-ADI/LR-Smith(/) comparable to Krylov methods.

> Compute low rank Cholesky factors Zg and Z¢ by LR-ADI or
LR-Smith(/), such that ZgZ} ~ Xz and ZcZ[ ~ Xo.

> Balancing cheap since Z} Z; small.

> Recent extensions using H matrix methods, Dissertation Baur
08, Grasedyck '07,. ..
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Ly Steel cooling example

2D Semi-discretization of heat equation (with boundary control
term) from a steel cooling example Penzl 99, without constraints,
using FEM

Mx(t) = —Nx(t)+ Bu(t)
y(t) = Cx(t)

> “stiffness matrix” N: large, sparse, symmetric, positive definite

> “mass matrix” M: large, sparse (same pattern as N),
symmetric, positive definite, well-conditioned

> dimensions of example: m=qg =6, n=12113
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Model reduction with LR-Smith(/)

Zg: rel.residual=9-10~"", rank Zz = 300
Zc: rel.residual =4-107"'2, rank Z; = 360

“Error” = Error(w) = || G(iw) — G(iw)| /¢, c = |G|,

Reduction n = 12113 \, n = 600, but difference in “frequency
response” is tiny. For larger error much smaller n.
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e Descriptor systems
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Control of Navier Stokes eq.

)
a—‘; — V(K(VV)) + Vp+ u(t),
0 = divy,

plus initial and boundary conditions Semidiscretization in space
gives descriptor system

av,
Tth = Ap(KhAnva(t)) + Vppn(t) + Bu(t),

0 = dthVh(t),
where vj, is the semidiscretized vector of velocities and py, is the

semidiscretized vector of pressures.
Linearization and robust H., control to take care of nonlinearity.
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Linear descriptor systems

Replace by
Ex(t) = AX(t)+Bu(t), X(t) =%
y(t) = Cx(1),
If E is singular, then
G(s) = C(sE — A)7'B = Gy(s) + P(s),

where Gp(s) is the proper rational part and P(s) is the
polynomial part, associated with the singular part of E.
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Gramians for descriptor systems.

Stykel, Diss. '02 Let P, P, be left, right spectral projectors onto

deflating subspace of A\E — A to finite eigenvalues.

> EXpeAT + AXpcET = —PiBBTP],  Xpc = P Xpc  proper
controllability Gramian.

> ETXpoA+ AT XpoE = =PI CTCP,  Xpo = XpcP) proper
observability Gramian.

> AXi AT — EX.ET =(I- P)BB"(I-P)", PX.=0
improper controllability Gramian.

> ATXioA— E"XoE = (I—P,)TCTC(I— P;) XpcP, =0
improper observability Gramian.

Proper Hankel singular values: & = \/A\j(XpcET Xp0E),

j =1,...,n.

Improper Hankel singular values: 0; = /\;(XicAT XioA),
j=1,..., Ne.
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&y Balanced truncation descriptor systems

> Compute (low rank) Cholesky factors

Xpe = RpRga Xoo = L;LmXic = RiRiTa Xio = LiTL/

> Form singular value decompositions

Xy O
0 %X

T

LER, — [ Up u@{ ][vo Vi ]

with ¥4 = diag(&y, ..., &g,), Nr << nf and

LER = [ U Us][% 8}[% Vs "

with ©1 = diag(61, ..., 05 ) invertible.
> (E,A B,C) = (WJET, W] AT,, W/ B, CT,), where
W, = [LTUT, 2 LT U072, T, = [RI VA, V2 RT Va0, 2.
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Ly Analysis of method

> Balancing for dynamic and algebraic part.
> Reduction for dynamic and algebraic part.
> Good approximation properties.

> Exact error estimates.

IG = Gl = 2(&nr + - + ).

> Stability is preserved. Passivity with modification.

> Low Rank methods for gen. Lyapunov/Riccati equations
Stykel '04.
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Ly Stokes Example

Discretization with FEM.

10 [ Ay Vi
E = |:0 0:|7A_|:dth 0:|’

B = {%],cz[o c .

T M 0
Pro= P = { —(V]divpy)'V]AT 0 |
N = [ —divy(V}divy)'V]

> We need only solutions with discrete Laplace Ay.

> Projectors P, P, are easy to get.

> Reduced models are ‘discretizations’ of Stokes equation.
> Discretized conservation law.
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Ky Numerical results

Semidiscretized model with n = 19520, n; = 6400 and

n,, = 13120. Approximation with n = 11, n; = 10, n,, = 1.
Approximate proper Hankel singular values for the
semidiscretized Stokes equation

s

Approximate proper Hankel singular values
b % L %
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Absolute error plots and bound for semidiscretized Stokes eq.
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e Flow control

Model reduction 43 /53



Hy Active flow control,

Navier—Stokes equations (3|
+ boundary conditions

speaker @ﬂ

7%

microphones

input output
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% Controlled flow

Henning/ Kuzmin/M./Schmidt/Sokolov/Turek '07. Movement of
recirculation bubble following reference curve.
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Ly Numerical/experimental results

Results obtained with the DFG Collaborative research center
SFB 557 TU Berlin.
> Closed loop separation control Becker/King/Petz/Nitsche 07.

> Computational investigation of separation for high lift airfoil
flows Schatz/Glnther/Thiele '07

> Systematic Discretization of Input/Output Maps Dissertation
Schmidt ’07
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Ly Experiment/Simulation
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Ly Lift optimization
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Flow field for different excitations
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% Current work

> Solution representations and model reduction for Oseen
equations (see also Heinkenschloss, Sorensen, et al. '07)

> Extension of theory and efficient reduction methods to linear
time varying systems.

> Adaptive grid refinement for input/output maps, as in Becker,
Heuveline, Rannacher, ...
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% Conclusions

> Control problems for PDEs.

> Semidiscretization leads to large sparse control problems with
few inputs and outputs.

Model reduction is used to reduce the order.
Control is determined from small model.

Large scale and generalized balanced truncation. Penz| "00,
Benner ’03, Stykel 04’, Baur '08

> Descriptor case: Dissertation Stykel, '02
> Error and perturbation bounds.
>
>

v Vv V

Discretization of input output maps M. Schmidt 2007.

MATLAB package LYAPACK, Penz| '00 available. New
Version from TU Chemnitz soon.
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Hy Thanks

Thank you very much
for listening to me for 3 hours.
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