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e Mixed SFEMon: A (z,w) ' u(z,w) — Vp(z,w) = 0, -V - u(z,w) = f(x)
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Outline

e Mixed SFEMon: A (z,w) ' u(z,w) — Vp(z,w) = 0, -V - u(z,w) = f(x)

e Solving stochastic saddle-point systems
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> Weak problem in H(div; D) ® L?(T") and L?(D) ® L?(T")
> Inf-sup stability

> Block-diagonal preconditioner

> Multigrid implementation

> Eigenvalue bounds

> Numerical results
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HANCHE TR Model Problem

Let A(z,w) : D x Q — R be arandom field.

Forx € D, A(w) is a random variable with finite variance; for w € Q, A(x) € L (D).

We seek random fields p(x, w), u(ax, w) such that P-almost everywhere w € Q:

Az, w) tu(e,w) — Vp(z,w) = 0,
Vou(e,w) = —f(e) xin D,
p(z,w) = g(x xon 0Dp,
u(ez,w) - n = 0 xon 0D .
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MANCHESTER Finite Noise Assumption

We assume that the input random field can be represented by a finite number of random
variables.
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Finite Noise Assumption

We assume that the input random field can be represented by a finite number of random
variables.

Here, we consider a truncated Karhunen-Loeve expansion :

M
A (@, w) ~ A]Ql(a:, ) = p(x) + Z \/A_q;Ci(fD)Sz',

=1

where £ = {£1(w), ... & (w)} are independent random variables and {\;, c;(x)} are the
eigenpairs of the correlation function C 4 —1 (1, 2).
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Finite Noise Assumption

We assume that the input random field can be represented by a finite number of random
variables.

Here, we consider a truncated Karhunen-Loeve expansion :

M
A (@, w) ~ A]Ql(a:, ) = p(x) + Z \/A_q;Ci(fD)Sz',

=1

where £ = {£1(w), ... & (w)} are independent random variables and {\;, c;(x)} are the
eigenpairs of the correlation function C 4 —1 (1, 2).

Note that:;

M
/D Var (A_l — A;j) = /D o?(x)dD — Zz::l i
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MANCHIZIER Example

Consider the covariance function

(e, 2) = 02 exp (_\:m —z1| |z —z2|> |
b1 b2

D = [0, 1] x [0, 1] and Gaussian random variables.

Preconditioning Saddle-Point Systems arising in a Stochastic Mixed Finite Element Problem — p. 6/:



y
er

The Universit
of Manchest

MANCHESTER Example

Consider the covariance function

Czr =zl we —Z2|>
b1 b2 ’

C(x,z) = 0% exp (
D = [0, 1] x [0, 1] and Gaussian random variables.

If by = 1 = b2 then 10 term KL expansion, yields relative error of 0.01

Two realisations of the resulting random field:
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MANCHESTER Exam P le

If by = % = bo then a 200 term KL expansion, yields relative error of 0.08

Two realisations of the resulting random field:
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Mixed Stochastic Galerkin Formulation

Lety;, = &,(w) el;, andwriteI' =11 xI'g x --- x I')y.

If the random variables are independent then the joint density function has the form:

p(y) = H pi (Vi)
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MANCHIZER Mixed Stochastic Galerkin Formulation

Lety;, = &,(w) el;, andwriteI' =11 xI'g x --- x I')y.

If the random variables are independent then the joint density function has the form:

p(y) = H pi (Vi)

and the expectation of a random function in y is defined via:

< g(y) >= /Fp(y)g(y) dy.
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Mixed Stochastic Galerkin Formulation

Lety;, = &,(w) el;, andwriteI' =11 xI'g x --- x I')y.

If the random variables are independent then the joint density function has the form:

p(y) = H pi (Vi)

and the expectation of a random function in y is defined via:

< g(y) >= /Fp(y)g(y) dy.

We also define the space L%(F) of random functions which satisfy:

/F p(w)9(w)? dy < co.
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Mixed Stochastic Galerkin Formulation

Consider the tensor product spaces

We seek u(z,y) € V and p(x, y) € W such that:
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MANCHIZIER Mixed Stochastic Galerkin Formulation

Consider the tensor product spaces
V = Hy,n(div; D) @ L2(T) W = L*(D) ® L3(T)
We seek u(z,y) € V and p(x, y) € W such that:
Jrr(y (A uv) dy+ [rp(y)(»,V-v)dy = [rp(Y)(9:v Ny, dy,

Jep(y) (w,V-uw)dy = —[rp(y)(fiw)dy

Vo(xe,y) € Vand w(z,y) € W.
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MANCHIZIER Mixed Stochastic Galerkin Formulation

Consider the tensor product spaces

V = Hy,n(div; D) @ L5(T) W = L?(D) ® L5(T)

We seek u(z,y) € V and p(x, y) € W such that:
(A3t w)) + (v v) = ((gv-msry,),
(0, V-u)) = —((f,w))

Vo(e,y) € Vand w(x,y) € W.
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MANCHESIER Finite-Dimensional Problem

Find uhd(:r:, y) eV, ®S,;and phd(m, y) e W, ® S, satisfying:
<(«4]T/[1uhd>’v>> +{((Pha,V -v)) = <(9a v - n)arD> ,
(w, V- upa)) = —((f,w))

\ v(az, ’y) eV, ®S5,;and w(w, y) eW,®S5y.
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Finite-Dimensional Problem

Find uhd(:r:, y) eV, ®S,;and phd(m, y) e W, ® S, satisfying:

<(«4]T/[1uhd,’v>> +{((Pha,V -v)) = <(9a v - n)arD> ,

(0, V-upq)) = —((f,w))

\ v(az, ’y) eV, ®S5,;and w(az, y) eW,L®S5,.

e V), C H(div; D), W;, C L?(D) are a deterministic inf-sup stable pairing e.g.
RTy(D)-Po(D).
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Finite-Dimensional Problem

Find uhd(:r:, y) eV, ®S,;and phd(w, y) e W, ® S, satisfying:

<(«4]T/[1uhd, ’v)> +{((Pha,V -v)) = <(9, v - n)arD> ,

(0, V-upq)) = —((f,w))

\ ’v(a:, ’y) eV, ®S5,;and w(cc, y) eW,L®S5,.

e V), C H(div; D), W;, C L?(D) are a deterministic inf-sup stable pairing e.g.
RTy(D)-Po(D).

e Sy C L?(I") is set of multivariate polynomials in M random variables. Choose from:

1. total degree d (generalised polynomial chaos) of dimension Ng = (A]@Td‘?!

2. degree d in each random variable of dimension N: = (d + HM
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MANCHESIER Abstract Saddle-Point Problem

We seek upq(x,y) € Vi ® Sg, and ppg(x,y) € Wy, ® Sy s.t.:

a(wpg,v) +b(phg,v) = <(g,'v : n)aFD> ,

b(wauhd) — - <(f7 ’LU)>

Vo(e,y) € V) ®Sgand w(x,y) € W, ® Sy
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Abstract Saddle-Point Problem

We seek upq(x,y) € Vi ® Sg, and ppg(x,y) € Wy, ® Sy s.t.:

a(upg,v) + b (prag,v) = <(g,'v : n)aFD> ,

b(wauhd) — - <(f7 ’LU)>

Vo(e,y) € V) ®Sgand w(x,y) € W, ® Sy

which leads to a symmetric indefinite system of the form:

(5 %)

of dimension N, x N¢ where Ny = Ny + Np.

o
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Matrix structure

Vi = span{p;(z)} ", Wp = span {¢j(m)}§v:pl, Sa = span {y(¥) 5

with {¢(y)} orthonormal w.r.t (-, -), the saddle-point matrix has the structure:

I Ao+ 3L, Gy ® A, I®BT

I®B 0
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Matrix structure

Vi = span{p;(z)} ", Wy = span {¢J("3)}3 1 Sa = span{¢y(y) ]k\f:‘gl

with {¢(y)} orthonormal w.r.t (-, -), the saddle-point matrix has the structure:

I Ao+ 3L, Gy ® A, I®BT

I ® B 0
where
Adliy = [p n(@)gs(x) - @, () — / e (2)5(@) - 0, ()
and
[B]ij — fD V- 901(33) ¢j (m) [Gk]TS — <yk¢r(y)¢s ('y) )
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Examples

M =2,d =2 (left) and M = 4, d = 2 (right)

oo
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The well-posedness of the stochastic saddle-point problem can be analysed using the
standard Brezzi-Babuska stability criteria.

Define the following norms on the tensor product spaces:

2 2
| ana Bivgrz = (Il @hal3iup))s  9na € Vi ®Sa

lwha 32972 = <H Whd H2L2(D)> ,  wpqg € Wi, ® 84
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Well-posedness

The well-posedness of the stochastic saddle-point problem can be analysed using the
standard Brezzi-Babuska stability criteria.

Define the following norms on the tensor product spaces:

2 2
| ana Bivgrz = (Il @hal3iup))s  9na € Vi ®Sa

lwna 22g2 = (llwnalZapy))s  wha € Wi ® Sq

If we choose:
e V;, := RTo(D) (lowest-order Raviart-Thomas elements)

o W; := Py(D) (piecewise constants)

and assume that:

0 < amin < AX/[l (,Y) < amaz < 00, ae.inD xT

then, the following results can be proved independently of the choice of S; C L?)(F).
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Well-posedness

e a(-,-)and b(-,-) are continuous bilinear forms

e Ellipticity

a (Vnd, Vhd) > amin || Vha 150012 Vvng € Znd

where
Znqg = {vn € Vi ® Sq st. b(Vha,whq) =0, Vwpg € W, ® Sg }
e Theorem (inf-sup stability)

There exists a constant 3 > 0 depending only on the domain D and the Raviart-Thomas
interpolation operator (and therefore independent of A, M and d) such that:

b(vpg,w ~
sup Whd: Whd) 5 5wy lprgre Vwna € W ® Sa.

Via € Vi @S\ {0} || Vhd llgivgr2
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MANCHESTER ldeal ‘Hdiv’ Preconditioner

Define deterministic matrices D € RNu*Nu and M € RN» X Np via:
[D]i; = / Vg V- P (M]rs = / OrPs.
D D

We then have matrix representations of the following stochastic norms:
| vna 34102 = o7 (A+D)w where D = I @ D
| wp ||%2®L2 = w!l Muw, where M = I ® M.
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|deal ‘Hdiv' Preconditioner

Define deterministic matrices D € RNu*Nu and M € RN» X Np via:
[D]i; = / V'Soz'v"Pja (M]rs = / OrPs.
D D

We then have matrix representations of the following stochastic norms:

H Uhd H?liv,.A—l(g)L2 = QT (A—I- D) v where D = I® D

| wp ||%2®L2 = w!l Muw, where M = I ® M.

Note that the discrete inf-sup condition tells us that:

2 . N, N
min - Yw € R*'pY¢ 0
g wT Mw — \{o}

~ - ~\ —1 -
) . wT B (A+D) BTw
(1, ) <

AQmax
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MANCHIER Eigenvalue bounds

Consider the ‘ideal’ preconditioner

P =

A+D 0 A+BTM~'B 0
0 M 0 M
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Eigenvalue bounds

Consider the ‘ideal’ preconditioner

b A+D 0 [ A+BTM'B 0
0 M 0 M
Theorem
The eigenvalues of
A BT U _ A+D 0 U
B 0 p 0 M p
are bounded and lie in the union of the intervals,
22
[_1, B ] o)
Amax
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MANCHIZIER Example

Let D = [0, 1] x [0, 1], with mixed bcs. We choose an exponential covariance function for the
random input with p(x) = 1 and o(x) = 0.2.

ulh=0

p:l p:0

ulh=0
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Pressure (left), Flux (right)
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Variance of numerical solution

Pressure (left), y component (middle) and x component (right) of the Flux
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In this example apmar = O(1)

(Exact) Preconditioned Minresiterations

h= 1 h= 2
d Ng | Iter dimension | Iter  dimension
M=4 1 5 6 6,560 6 25,920
- 2 15 6 19,650 6 77,760
- 3 35 6 45,920 6 181,440
- 4 70 6 91,840 6 362,880
M=5 1 6 6 7,872 6 31,104
- 2 21 6 27,552 6 108,864
- 3 56 6 73,472 6 290,304
- 4 126 6 165,312 6 653,184
M=6 1 7 6 9,184 6 36,288
- 2 28 6 36,736 6 145,152
- 3 84 6 110,208 6 435,456
- 4 210 6 275,520 6 1,088,640
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MANCHESTER (Exact) Preconditioned Minresiterations

1824

With h = %, M = 4 and d = 2 fixed and varying ratio %

< 01 02 04 038

Iter 6 6 6 6

With h = 3—12, M = 4and d = 2 and % = 0.1 so that only a,,, ... IS varying

1072 100t 10° 10t 107

Iter 4 4 6 9 22
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Practical |mplementation

We need a fast solver for systems with the coefficient matrix:

M
A+D=1® (Ao +BTM—1B) + (Z G ®Ak>
k=1

which represents a weighted stochastic H (div; D) ® L%(F) operator:

H.a : RTo(D) ® Sq(T') — RTH(D) ® S4(I)

defined via:

(ﬂA'Uhda ’vhd) = / p(y) (/D Ay Vhd  Vha + YV vRa Vg dD) dy.
r

Note that this is not an elliptic operator.
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Eigenvalue bounds

Theorem: Suppose there exists a matrix V satisfying

vl (fl — D) v
b < _ <e<1
vI'Vo

with positive constants 6 and ©. The eigenvalues of:

BT
0

oy
S I
o <
= ©
S I

lie in the union of the intervals,

where a =

[—lf—%(k(l—f@——V%2@X—])2+4aﬁ)}U[&l]

BQ

max

IS the corresponding bound for the ideal preconditioner.
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MANCHZER Geometric H(div) Multigrid

N |
We approximate the action of (A + D) via a specialised multigrid V-cycle.
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MANCHZER Geometric H(div) Multigrid

N |
We approximate the action of (A + D) via a specialised multigrid V-cycle.

We use a stochastic extension of the Arnold-Falk-Winther multigrid as discussed in
‘Preconditioning in H(div) & Applications’, Math. Comp., 66 (1998)
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Geometric H(div) Multigrid

N |
We approximate the action of (A + D) via a specialised multigrid V-cycle.

We use a stochastic extension of the Arnold-Falk-Winther multigrid as discussed in
‘Preconditioning in H(div) & Applications’, Math. Comp., 66 (1998)

The main idea is to only vary the spatial discretisation from grid to grid whilst keeping the
stochastic discretisation fixed.
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Geometric H(div) Multigrid

N |
We approximate the action of (A + D) via a specialised multigrid V-cycle.

We use a stochastic extension of the Arnold-Falk-Winther multigrid as discussed in
‘Preconditioning in H(div) & Applications’, Math. Comp., 66 (1998)

The main idea is to only vary the spatial discretisation from grid to grid whilst keeping the
stochastic discretisation fixed.

Key ingredients:
e Prolongation: P = I ® Pl where P is a standard spatial prolongation operator
e Restriction operator R = PT = T @ R

e Smoother: additive Schwarz method (block Jacobi)
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Additive Schwar z Smoothing

Let H;, = A + D be the stochastic H(div) matrix associated with a fixed spatial mesh T},
decomposed into vertex-based patches:

The smoothing operator (in matrix form) is defined via:

A Pk r7—1
Sp,=n) PrH,
k

Preconditioning Saddle-Point Systems arising in a Stochastic Mixed Finite Element Problem — p. 27/:
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MANCHZER Additive Schwarz Smoothing

where

P = (I ® R{)H; (I ® Ry)Hy.

Then, for v € RN«N¢ we have:

Spv=n) (IQR[)H, (I ® Rg)v
k

where Flh,k represents a local ‘patch-version’ of the matrix Hj, .
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Additive Schwar z Smoothing

where

P = (I ® R{)H; (I ® Ry)Hy.

Then, for v € RN«N¢ we have:

Spv=n) (IQR[)H, (I ® Rg)v
k

where ﬁlh,k represents a local ‘patch-version’ of the matrix Hj, .

Smoothing requires multiple decoupled solves with ﬁh,k. In the stochastic problem:

M
Hyr=1® (Ao + Do)+ Z Gi ® Ak
i=1

and so the dimension of each local matrix is N¢ V..
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Additive Schwar z Smoothing

where
P = (I ® R{)H; (I ® Ry)Hy.

Then, for v € RN«N¢ we have:

Spv=n) (IQR[)H, (I ® Rg)v
k

where ﬁlh,k represents a local ‘patch-version’ of the matrix Hj, .

Smoothing requires multiple decoupled solves with ﬁh,k. In the stochastic problem:

M
Hyr=1® (Ao + Do)+ Z Gi ® Ak
i=1

and so the dimension of each local matrix is N¢ V..

This is tractable for a few thousand stochastic degrees of freedom.
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Multigrid Convergence

Theorem

Let V denote the matrix corresponding to the inverse of the multigrid V-cycle operator
described above. Then,

vl (fl - fJ) v
o < . <1
vV
where
0=1— ¢
C 4+ 2v

depends only on the number of smoothing steps v and a.,;» and amaz.
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Multigrid Convergence

Theorem

Let V denote the matrix corresponding to the inverse of the multigrid V-cycle operator
described above. Then,

vl (fl+f)> v
o < . <1
vV
where
o—1-_"¢
C 4+ 2v

depends only on the number of smoothing steps v and a.,;» and amaz.

Combining this result with eigenvalue bound for preconditioned saddle-point system, we
have a solver that is optimal w.r.t all discretisation parameters.
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MANCHESTER Example 1

e 1 multigrid V-cycle per minres iteration; 1 pre and 1 post smoothing step;

e Uniform random variables; yu(x) =1, 0 = 0.1 (= amaz = O(1))

d| M=1 M=2 M=3 M=4
h=4& 1 17 17 17 17
: 2 17 17 17 17
: 3 17 17 17 17
: 4 17 17 17 17
h=2 1 17 17 17 17
: 2 17 17 17 17
: 3 17 17 17 17
: 4 17 17 17 17
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Example?

e Fixed discretisation parameters: h = 1—16, M=4,p=2.

e Varying %

Preconditioned minres iterations:

% 0.1 0.2 0.3 0.4 0.5 0.6
Ideal 6 6 6 6 6 6
Multigrid version 17 17 17 17 17 17
Multigrid constants
0.2 0.3 0.4 0.5 0.6

0.4576  0.4564  0.4548 0.4527 0.4495
1.0000 1.0000 1.0000 1.0000 1.0000

O D Kl
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Example3

e Fixed discretisation parameters: h = =, M =4, p = 2.

e Vary amaz by varying pu and setting o = £-.

Preconditioned minres iterations:

p | 107 1072 107! 10° 10t 10% 10°

|deal 3 3 4 5 8 16 46
Multigrid version 15 15 16 17 21 40 99

Multigrid constants

L 1073 102 101 10° 10! 102 103

S
o
SN
a1
o1
N

0.4550 0.4556  0.4587 0.4864 0.6453 0.9172
© | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
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e Solving well-posed stochastic saddle-point problem

e Stochastic inf-sup stability result leads to nice eigenvalue bounds for H (div)
preconditioners

e Practical implementation based on deterministic Arnold-Falk-Winther multigrid
e Analysis of extended multigrid method available

e Preconditioner for saddle-point system is optimal w.r.t spatial and stochastic
discretisation parameters

e Overall performance does depend on a,,;», and amaqz

e EXxperiments with modified (cheaper) smoothers look promising
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Alternative Preconditioning Scheme

We know that optimal preconditioners mimic the mapping properties of the underlying
saddle-point operator. Here, there are two options.

Preconditioning Saddle-Point Systems arising in a Stochastic Mixed Finite Element Problem — p. 34/:



y
er

The Universit
of Manchest

MANCHISIER Alternative Preconditioning Scheme

We know that optimal preconditioners mimic the mapping properties of the underlying
saddle-point operator. Here, there are two options.

An alternative ideal preconditioner is given by:

P — Adiag 0
— =<1 =p
0  BAG. B
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Alternative Preconditioning Scheme

We know that optimal preconditioners mimic the mapping properties of the underlying
saddle-point operator. Here, there are two options.

An alternative ideal preconditioner is given by:

P — Adiag 0
— =<1 =p
0  BAG. B

The blocks of this matrix represent norms in which an alternative inf-sup condition can be
established. In particular,

Tpi—-1 pT
w'BA L, B w = (|| whal

2
fha)

represents the expectation of a (weighted) mesh-dependent H; (D) norm.
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Alternative Preconditioning Scheme

We know that optimal preconditioners mimic the mapping properties of the underlying
saddle-point operator. Here, there are two options.

An alternative ideal preconditioner is given by:

P — Adiag 0
— =<1 =p
0  BAG. B

The blocks of this matrix represent norms in which an alternative inf-sup condition can be
established. In particular,

Tpi—-1 pT
w'BA L, B w = (|| whal

2
fha)

represents the expectation of a (weighted) mesh-dependent H; (D) norm.

Pro: Standard multigrid methods can be used. Con: Obtaining fldmg that yields robustness
w.r.t PDE coefficients is difficult.
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