Lecture 1: Stability and Bifurcations for the Discretised
Incompressible Navier-Stokes Equations

Alastair Spence

Department of Mathematical Sciences
University of Bath

CLAPDE, Durham, July 2008

UNIVERSITY OF

of Bath




Outline

© Introduction

© The Taylor-Couette Problem

© Stability in time-dependent PDEs

@ Bordered Matrices

© Numerical Continuation and Bifurcations
© The Taylor problem again: Numerics

@ Conclusions

UNIVERSITY OF

tair Spence ity of Bath

nd



Outline

© Introduction

UNIVERSITY OF




Introduction

The 3 lectures

o Lecture 1: Basic ideas of bifurcation/stability in time dependent PDEs;
The Taylor-Couette problem - a comparison of experimental results
with numerics; Numerical linear algebra of bordered matrices

@ Lecture 2: Hopf bifurcations and periodic orbits in large systems; some
open questions; The Taylor problem again

o Lecture 3: Inexact Inverse Iteration and Jacobi-Davidson with
preconditioning; numerical results from Navier-Stokes and other
problems

o “Cliffe, Spence & Tavener”, review in Acta Numerica (2000)

o “Spence & Graham”, introductory notes from 1998 Leicester Summer
School
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Introduction

Stability and Bifurcation: the basics

o The Taylor-Couette Problem: Benjamin & Mullin experiments
(1978,1981,...)

(Linearised) Stability for time dependent discretised PDEs

o Bordered matrices

@ Numerical continuation and bifurcations

The Taylor problem again: comparison of numerics with experiments

o Conclusions
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The Taylor Problem (Benjamin & Mullin)

T
R ——

00000

DO

\—// 4—cell flow 6—cell flow

Figure: The Taylor problem showing 4-cell and 6-cell flows

o Two parameters: R, Reynold’s number (speed of inner cylinder) and «,
the aspect ratio (height/gap)
o Experiment:
Q Fix o
© Increase R slowly from zero, or start up suddenly with large R
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The Taylor Problem: Schematic of experimental results

Aspect ratio
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The Taylor Problem: Anomalous modes (Benjamin & Mullin)

Velocity

6

o e

Figure: 4 and 6 cell anomalous modes: sequence of bifurcation diagrams as aspect
ratio varies
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Question

Can we reproduce these experimental results using numerical methods? BTH
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© Stability in time-dependent PDEs
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Linearised Stability

o &= F(x,\), z(t) e R"
o Bifurcation Theory: change of stability of solutions (steady, periodic,
homoclinic,...) as A varies

o Steady solution: 0 = F(z, \)
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Linearised Stability

o &= F(x,\), z(t) e R"
o Bifurcation Theory: change of stability of solutions (steady, periodic,
homoclinic,...) as A varies
o Steady solution: 0 = F(z, \)
o Linearised Stability
@ Perturbation: © — x + ¢

Q A(X) = Fz(z, X), Jacobian

Q@ i=¢et'd

o (20 0]
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Stability

Linearised Stability

o &= F(x,\), z(t) e R"
o Bifurcation Theory: change of stability of solutions (steady, periodic,
homoclinic,...) as A varies

Steady solution: 0 = F(z, \)
o Linearised Stability
@ Perturbation: © — x + ¢

Q A(X) = Fz(z, X), Jacobian

Q@ i=¢et'd

o (20 10]

@ As A varies, p varies in C. Loss of stability arises:
© 1 passes through 0, so F is singular
© a complex pair crosses imaginary axis: in this case Fj is non-singular
(Lecture 2 on Hopf bifurcation.)

o left-half plane is “stable”; right-half plane is “unstable”

o Pseudo-eigenvalues?
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Stability

Incompressible Navier-Stokes

Discretisation of linearised equations using mixed finite elements leads to
the following eigenvalue problem:

e ol e Sl
A(N)¢ = uB¢

“Saddle point” A(X), but K(\) nonsymmetric

o 4 could be complex

B positive semidefinite: p =“oc0”

K(X\ C M C
o[fyC(’T) 70][§]ZN[CT O][u] “oc0” mapped to vy
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Strategy for Stability Analysis

o Compute steady state diagram: F'(z,\) =0

o Detect existence of bifurcation points (i.e. where real or complex
eigenvalues of F, = A(\) cross imaginary axis), and then locate them

accurately

o In two parameter problems (e.g. Reynold’s number and aspect ratio):

Compute paths of bifurcation points

o Key tool: Bordered matrices
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Bordered Matrices

Background on Bordered matrices

e AcR™™ b,ceR"

A b
(n4+1) x (n+1)
e M = [ CT d :| € R
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Bordered Matrices

Background on Bordered matrices

e AeR™", b,ceR”
A b
_ (n+1)x (n+1)
o M= [ CT d :| eR
o If Rank(A) = n and (d — ¢” A™'b) # 0, then M is nonsingular

o If Rank(A) < n — 1 then M is singular
If Rank(A) =n — 1 with Ap =0, T A =07 then

Tb#0, ¢"¢p#0 < M nonsingular
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Bordered Matrices

Background on Bordered matrices

e AeR™", b,ceR”
A b
_ (n+1)x (n+1)
o M= [ CT d :| eR
o If Rank(A) = n and (d — ¢” A™'b) # 0, then M is nonsingular

o If Rank(A) < n — 1 then M is singular
If Rank(A) =n — 1 with Ap =0, T A =07 then

Tb#0, ¢"¢p#0 < M nonsingular

o Bordering is important

o Example: Assume A has singular values o1 > --- > op—1 > 0. Then
_| A ¥
v=l g 0]
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Bordered Matrices

Solving bordered systems: A nearly singular

@ Assume A has structure
A b x| _ | f
' d vyl | g
A b | I 0 A b
I od|l | W1 0 ¢

Forward/back substitutions use 1 solve with A7, (ATw = ¢), and 1

solve with A
A b] [ A O I v
T d| | &6 0 1

e Crout (C)
Forward /back substitutions use 2 solves with A

o Consider

o Doolittle (D)
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Block Elimination Algorithm for A nearly singular: Govaerts&Pryce

Consider
A b x| | f
g d vyl | g
e Crout (C) and Doolittle (D) both fail when A is nearly singular

e BUT:

@ (D) computes y well
@ If y is known accurately, (C) computes z well
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ed Matrices

Block Elimination Algorithm for A nearly singular: Govaerts&Pryce

Consider
A b x| | f
g d vyl | g
Crout (C) and Doolittle (D) both fail when A is nearly singular

e BUT:

@ (D) computes y well
@ If y is known accurately, (C) computes z well

o Method: Use (D) to get §g. Apply iterative refinement on (C) with
starting guess (0, )

Govaerts&Pryce: Backward stable
o Cost: 1 solve with AT, 2 solves with A
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Bordered matrices and Iterative solvers

o Calvetti&Reichel (2000)
o A symmetric

@ monitor eigenvalues of F along F'(z,\) = 0 using Implicitly Restarted
Block Lanczos

@ solve bordered systems using FOM with basis from Block Lanczos
o No preconditioning?

o Extension to nonsymmetric problems -OK for real eigenvalues but
complex eigenvalues?

o LOCA “Library of Continuation Algorithms”, Sandia
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Bordered Matrices

Bordered Matrices

We shall see that bordered matrices arise naturally in the following 3 tasks:
@ Numerical Continuation (i.e. computing F(z,\) = 0)
@ (i) Detecting when Det(F;) changes sign, and
(ii) accurate calculation of singular points

@ Numerical continuation of paths of singular points in 2-parameter
problems

@ Requirement: Efficient algorithms for bordered matrices with structure
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Numerics

To compute F(z, ) = 0; Pseudo-arclength continuation (Keller)
e Implicit Function Theorem (IFT):
F(x0,X0) =0, and Fy(xo, Ao) nonsingular =,

F(z(A),\) =0 near A = Ao
@ (o, A\o) is regular. IFT=- 3 path of regular points near (zo, Ao)

o Numerical continuation is merely the computational version of IFT
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Numerics

To compute F'(x,\) = 0; Pseudo-arclength continuation (Keller)
e Implicit Function Theorem (IFT):
F(x0,X0) =0, and Fy(xo, Ao) nonsingular =,

F(z(A),\) =0 near A = Ao

(zo, Ao) is regular. IFT=- 3 path of regular points near (zo, Ao)

Numerical continuation is merely the computational version of IFT

o To “pass over” singular points add an extra normalisation:

Gly,t) = cT(x—xof’—(l-wéi?))\—)\O)_t]:[8]7 y:[i]
) Gy =| o ]
o T d?

o Key tool: Efficient treatment of bordered matrices near points whegg
F is nearly singular
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Numerics

Pseudo-arclength continuation

o The “normalisation” = equation of the plane L tangent
o ¢t is the “length along the tangent” (“pseudo-arclength”)
o G(y,t) = 0 represents the point where curve intersects the plane

o Method: compute tangent; form G(y,t) = 0; solve using Newton
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Numerics

Pseudo-arclength continuation

o The “normalisation” = equation of the plane L tangent

o ¢t is the “length along the tangent” (“pseudo-arclength”)

o G(y,t) = 0 represents the point where curve intersects the plane
o Method: compute tangent; form G(y,t) = 0; solve using Newton
o Aside: DAETS - F(z,)) =0, &7&+X =1
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Numerics

Generic bifurcations in 1-parameter problems

stable

P= pitchfork
A

Figure: Generic behaviour for singular points in 1-parameter problems

o Lecture 2: Complex pair crosses Imaginary axis

e Two cases: (a) Turning Point
(b) If a symmetry is broken (i.e eigenvector ¢ ‘breaks’ the symmetry)
then Symmetric Pitchfork

o Taylor problem has a reflectional symmetry

o In both cases: F(z(t),\(t)) = 0: u(t) is eigenvalue of Fy(z(t), A(t))
then

u(t) =0, %u(t) # 0 at the singular point
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That is, an eigenvalue of Fy passes through zero “smoothly”
o loss of stability at the singular points
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Numerics

Detection then accurate calculation
o Seek (z, A) such that Fi(z, ) is singular

o Consider
. R i (MR
° g=g(z,

o Cramer’s Rule: Det(F;) =0 < ¢ =0.
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Numerics

Detection then accurate calculation
Seek (z, A) such that Fi(z, ) is singular

Consider
PR
g =49\z,

Cramer’s Rule: Det(F;) =0 <= ¢ =0.
Accurate calculation: Consider the pair

F(z,\) =0, g(z,\)=0

o Newton’s Method:

mor menla]=-17]

o System nonsingular if % w1 # 0 at singular point
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Numerics

Detection then accurate calculation

o Seek (z, A) such that Fi(z, ) is singular
o Consider
Fy(z,\) Fi(z,\) « | [0
e =
° g=g(z,2)
o Cramer’s Rule: Det(F;) =0 < ¢ =0.

Accurate calculation: Consider the pair
F(z,\)=0, g(z,\)=0
o Newton’s Method:
Fo(z,\) Fi(z,)\) Az | F

et mem | [ &3] ==[ 7]
System nonsingular if % w1 # 0 at singular point
Extended Systems:

F(z,\) =0, Fu(z,\)$=0, c'¢=1
Also reduces to solving 1-bordered systems ( numerics for Taylor

problem)
o Adapt for symmetry-breaking
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Numerics

2-parameter problems (e.g. The Taylor Problem)

o Use system that is nonsingular at a bifurcation point (F, singular)
o Use pseudo-arclength to follow paths bifurcation points. For example:
F(x7 )\7 a) = 07 g(x7 A? a) = 0? n(x7 )\7 a7 t) = 0
where n(z, A, a,t) = 0 is the “normalisation” (2-bordered systems)
o detect singular points on path of bifurcations?
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Numerics

Transcritical bifurcation

I8

Figure: The sequence to a transcritical bifurcation for F(z, A, o) =0

solid lines represent stable solutions

o Transcritical bifurcations should not occur in 1-parameter problems

A Transcritical bifurcation, and a Cusp are Turning points in a path of
Turning points

Transcritical and Cusp bifurcations are “codimension 1”

@ Multi-parameter problems?
High codimension points are called Organising Centres
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Recall the Taylor Problem: Schematic of experimental results
f

Aspect ratio
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Recall the Taylor Problem

Velocity

6

fo-ls

Figure: 4 and 6 cell anomalous modes: sequence of bifurcation diagrams as aspect
ratio varies
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Numerical results for the 4-6 cell interchange (Cliffe)
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The 4-6 cell interchange including symmetry-breaking (Cliffe)
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Conclusions

Conclusions

Numerical methods work!

Excellent agreement between numerics and experiment
Eigenvalues work! (Problem isn’t very “non-normal”)

The numerical methods gave extra insight via symmetry-breaking
Efficient methods for bordered systems are crucial

Iterative methods for bordered sytems in continuation and bifurcation
analysis?

Lecture 2: Hopf bifurcations and periodic orbits
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