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N

bring together
many notions of

size in mathematics



1. Cardinality-like invariants

Sets have cardinality
Topological spaces have Euler characteristic
O-minimal sets have Euler characteristic (van den Dries)
Measurable sets have measure
Polyconvex sets have intrinsic volumes (Hadwiger)
Vector spaces have dimension
Probability spaces have exponential of entropy

Typical properties:

• |A× B| = |A| × |B|
• |A ∪ B| = |A|+ |B| − |A ∩ B|

(suitably interpreted)

Structure-forgetting functors tend not to preserve ‘size’, e.g. Vect→ Set.

Free functors do tend to preserve size, e.g. Set→ Vect.



2. The cardinality of a category

Plan: Define and explore an invariant, the cardinality, of finite categories.



Possible motivation: a categorical view of combinatorics

Inclusion-exclusion formula: Free action by a group:

|X1 ∪ X2| = |X1|+ |X2| − |X1 ∩ X2|. |X/G | = 1
o(G) |X |.

Categorical version Categorical version

Let L =

(
0 - 1

2
?

)
.

Let G be the group G viewed as a
category with one object, ?.

For ‘good’ functors X : L→ FinSet, For ‘good’ functors X : G→ FinSet,

|lim
→

X | = |X1|+ |X2| − |X0|. |lim
→

X | = 1
o(G) |X (?)|.



Possible motivation: a categorical view of combinatorics

Is there a common generalization?

For each finite category A, we seek weights wa ∈ Q (a ∈ A) such that for all
‘good’ functors X : A→ FinSet,

|lim
→

X | =
∑
a∈A

wa|X (a)|.

If such weights exist,
∑

a wa might be a useful measure of the category A.

This works out as follows. . .



The cardinality of a category: definition

Let A be a finite category.

A weighting on A is a family (wa)a∈A of rationals such that

∀a ∈ A,
∑
b

|Hom(a, b)|wb = 1.

Coweightings (wa)a∈A are defined dually:

∀b ∈ A,
∑

a

|Hom(a, b)|wa = 1.

Easy Lemma

If w• is a weighting and w • is a coweighting then
∑

a wa =
∑

a wa.

Assuming that there exist a weighting w• and a coweighting w • on A,
define the cardinality of A as

|A| =
∑
a∈A

wa =
∑
a∈A

wa ∈ Q.

This is independent of the choice of weighting and coweighting.



The cardinality of a category: elementary examples

Example

Let A =

(
0 - 1

2
?

)
. The unique weighting w• is w0 = −1, w1 = w2 = 1. So

|A| = −1 + 1 + 1 = 1.

Example

Let A = (0
^

�
1). The unique weighting w• is w0 = −1, w1 = 1. So

|A| = 0 (= χ(S1)).



Comparison with cardinality of a set

Given a set S , let S be the discrete category on S : objects are elements of S ,
and there are no morphisms except identities.

Theorem

Let S be a finite set. Then
|S| = |S |.



Comparison with order of a monoid

Given a monoid G , let G be the one-object category whose
morphisms are the elements of G .

Write o(G ) = (order of G ).

Theorem

Let G be a finite monoid. Then

|G| = 1

o(G )
.



Comparison with Euler characteristic of a poset

Given a poset P, let P be the category whose objects are the
elements of P and with

Hom(a, b) =

{
1 if a ≤ b
0 otherwise

Write

χ(P) =
∞∑

n=0

(−1)n|{chains a0 < a1 < · · · < an in P}|.

Theorem

Let P be a finite poset. Then

|P| = χ(P).



Comparison with Euler characteristic of a graph

Given a directed graph G , let F (G ) be the category whose objects are the
vertices of G and whose morphisms are the directed paths.

Write
χ(G ) = (no. vertices of G )− (no. edges of G ).

Theorem

Let G be a finite, circuit-free graph. Then

|F (G )| = χ(G ).



Comparison with Euler characteristic of a topological space

Given a category A, let BA be its classifying space (the geometric realization
of its nerve).

E.g.: If A = (0
^

�
1) then BA = S1.

Theorem

Let A be a finite category containing no endomorphisms or isomorphisms
except identities. Then

|A| = χ(BA) ∈ Z.



Comparision with Euler characteristic of an orbifold

Given a triangulated orbifold X , can build a category S(X ) (Moerdijk and
Pronk).

E.g.: If X is a manifold then S(X ) is the poset of simplices in the
triangulation.

Theorem (with Ieke Moerdijk)

Let X be a finitely-triangulated orbifold. Then

|S(X )| = χ(X ) ∈ Q.



Properties of the cardinality of categories

Invariance: A ' B⇒ |A| = |B|

Products: |A× B| = |A| × |B|

Coproducts: |Aq B| = |A|+ |B|

Fibrations: There is a sensible formula for the cardinality of a fibred
category.
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3. The cardinality of an enriched category

When we defined the cardinality of a category, all we used about the sets
Hom(a, b) was their cardinalities.

We didn’t even use the fact that they were sets.

Idea: We can replace the sets Hom(a, b) by any type of object for which
there is a good notion of cardinality.



Background: enriched categories

Approximate definitions:

A monoidal category is a category V equipped with a binary product ⊗,
associative and unital up to isomorphism.

E.g.: V = Set with ⊗ = ×; or V = Vect with usual ⊗.

A category enriched in V consists of:

• a class obA of objects

• for each a, b ∈ obA, an object Hom(a, b) ∈ V

• for each a, b, c ∈ obA, a morphism

Hom(a, b)⊗ Hom(b, c)→ Hom(a, c)

in V (‘composition’),

etc.

E.g.: A category enriched in (Set,×) is an ordinary category.

A category enriched in (Vect,⊗) is a ‘linear category’.



The cardinality of an enriched category: definition

Suppose that we have a monoidal category V
and a ‘cardinality’ |X | for each object X ∈ V .

Using exactly the same words as before, we obtain a definition of the
cardinality |A| of a finite category A enriched in V .

Example

Take V = Vect, usual ⊗, and |X | = dim(X ). Then we obtain a definition of
the cardinality of a linear category with finitely many objects and
finite-dimensional hom-spaces Hom(a, b).



Comparison with Euler characteristic of an algebra

Given a k-algebra A, let A be the category enriched in Vectk whose objects
are the projective indecomposable A-modules, and with
Hom(M,N) = HomA(M,N).

For a graded algebra A, write

χ(A) =
∞∑
i=0

(−1)i dim(ExtiA(A0,A0)).

Theorem (with Catharina Stroppel)

Let A be a Koszul algebra, of finite dimension and finite global dimension,
over an algebraically closed field. Then

|A| = χ(A).



The cardinality of an n-category

A (small) 0-category is a set.

A (small, strict) n-category is a category enriched in ((n − 1)-categories).

From the notion of the cardinality of a finite set, we obtain inductively a
notion of the cardinality of a finite n-category.

Example

For each n, there is an n-category Sn consisting of two parallel n-morphisms.

(E.g. S2 = .) Then

|Sn| = 1 + (−1)n = χ(Sn).



Background: metric spaces as enriched categories

Observation (Lawvere): A metric space is an enriched category.

Let V be the poset ([0,∞],≥) viewed as a category:

• objects of V are numbers x ∈ [0,∞]

• there is one morphism x → y if x ≥ y , and there are none otherwise.

V is a monoidal category with ⊗ = +.

Any metric space A is naturally a category enriched in V :

• objects are points

• Hom(a, b) = d(a, b) ∈ V

• composition becomes the triangle inequality d(a, b) + d(b, c) ≥ d(a, c).



The cardinality of a finite metric space

Define the cardinality of x ∈ [0,∞] to be e−2x . (There is a good reason.)

We obtain a definition of the cardinality of a finite metric space.

Explicitly: Let A be a finite metric space. Solve the system of equations

∀a ∈ A,
∑
b∈A

e−2d(a,b)wb = 1

in real numbers wb (b ∈ A). Then |A| =
∑

a wa.



The cardinality of a finite metric space: examples

E.g.: |∅| = 0.

E.g.: | • | = 1.

E.g.: |•← d →•| = 1 + tanh d :

0

1

2

cardinality

d

E.g.: If A has n points with d(a, b) =∞ for all a 6= b then |A| = n.



Comparison with entropy of a probability distribution

There is a notion of the entropy HA(p) of a probability distribution p on a
finite metric space.

The maximum entropy problem: fix a background space A.
Which probability distribution p maximizes the entropy HA(p)?

Theorem

Let A be a finite, ‘well-separated’ metric space. Then

|A| = exp(sup
p

HA(p))

where the supremum is over all probability distributions p on A.

So cardinality is exp(maximum entropy).



The cardinality of a compact metric space

Idea: Given a compact metric space A, choose a sequence

A0 ⊆ A1 ⊆ · · ·

of finite subsets of A, with
⋃

i Ai dense in A. Try to define

|A| = lim
i→∞
|Ai |.

Sometimes this works! E.g.

|[0, s]× [0, t]| = 1
H

Euler char

+ (s +
H

1
2×perimeter

t) + st
H

area

J
degree is
dimension

(using the appropriate product metric: ‘d1’).



4. A more conceptual approach

Problem: Cardinality is sometimes undefined.

‘Motivic’ solution: Let cardinality live where it wants to live!

Strategy: (For simplicity, just describe non-enriched case.)

Given a category A, let R(A) be the semiring generated by elements wa and
wa (a ∈ A) subject to the usual equations:

∀a,
∑
b

|Hom(a, b)|wb = 1; ∀b,
∑

a

|Hom(a, b)|wa = 1

Define ||A|| =
∑

a wa =
∑

a wa ∈ R(A).

Easy Lemma: ||A|| ∈ R(A) is absolute, that is, for all semirings S and
homomorphisms f , g : R(A)→ S , we have f (||A||) = g(||A||).

So if there exists f : R(A)→ Q then f (||A||) is independent of choice of f .
This rational number is the old cardinality |A|.



Summary

There is a canonical notion of
the cardinality of a finite category

It links together, by comparison theorems, many notions of ‘size’ in
mathematics. E.g.: size of sets, groups, graphs, posets, topological spaces,
manifolds and orbifolds. More generally:

There is a canonical notion of
the cardinality of a finite enriched category

It links together several more notions of ‘size’: e.g. size of associative
algebras and probability distributions. It also provides some new invariants:
e.g. the cardinality of a metric space. But so far, it is less explored.



Notes and references

These slides are available at www.maths.gla.ac.uk/∼tl

Cardinality-like invariants: I have learned most about the general idea of
‘size’ from

John Baez, The mysteries of counting: Euler characteristic versus
homotopy cardinality, http://math.ucr.edu/home/baez/counting

and

Daniel A. Klain, Gian-Carlo Rota, Introduction to Geometric
Probability, Lezioni Lincee, Cambridge University Press, 1997

and two papers of Schanuel, who was the first to really push the idea that
Euler characteristic is to topological spaces as cardinality is to sets:

Stephen H. Schanuel, Negative sets have Euler characteristic and
dimension, Category Theory (Como, 1990), 379–385, Lecture
Notes in Mathematics 1488, Springer, 1991

http://www.maths.gla.ac.uk/~tl/ndmtf
http://math.ucr.edu/home/baez/counting


Notes and references

and

Stephen H. Schanuel, What is the length of a potato? An
introduction to geometric measure theory, in Categories in
Continuum Physics, Lecture Notes in Mathematics 1174, Springer,
1986.

Klain and Rota’s book also contains a good account of Hadwiger’s theorem
on the intrinsic volumes of polyconvex sets. The Euler characteristic of
o-minimal sets was defined in

Lou van den Dries, Tame Topology and O-minimal Structures,
London Mathematical Society Lecture Note Series 248, Cambridge
University Press, 1998.



Notes and references

The cardinality of a category: The main paper on this is

Tom Leinster, The Euler characteristic of a category, Documenta
Mathematica 13 (2008), 21–49,
www.math.uni–bielefeld.de/documenta/vol–13/02.html

The ‘good’ functors mentioned in the slides are the sums of representables.
When A is Cauchy-complete, this is equivalent to being flat with respect to
finite connected limits.

A different approach, perhaps more appealing to homotopy theorists, is in

Clemens Berger, Tom Leinster, The Euler characteristic of a
category as the sum of a divergent series, Homology, Homotopy
and Applications 10(1) (2008), 41–51,
http://intlpress.com/HHA/v10/n1/a3

What I called the cardinality of a category here is called its Euler
characteristic in these papers.

http://www.math.uni-bielefeld.de/documenta/vol-13/02.html
http://intlpress.com/HHA/v10/n1/a3/


Notes and references

The cardinality of an enriched category: Many introductions to category
theory contain an account of enriched categories. Categories enriched in V
are sometimes referred to as ‘V -categories’.

The discovery that metric spaces are enriched categories was published by
Lawvere in 1973; that classic paper has been reprinted as

F. William Lawvere, Metric spaces, generalized logic, and closed
categories, Reprints in Theory and Applications of Categories 1
(2002), 1–37.

The work on metric spaces has yet to be written up properly. The existing
sources are

Tom Leinster, The cardinality of a metric space, post at The
n-Category Café, 9 February 2008,
http://golem.ph.utexas.edu/category/2008/02/metric spaces.html

(which is detailed but contains some mistakes) and

http://www.tac.mta.ca/tac/reprints
http://golem.ph.utexas.edu/category/2008/02/metric_spaces.html


Notes and references

Tom Leinster, The cardinality of a metric space, talk at CT08,
Calais, www.maths.gla.ac.uk/∼tl/calais

Cardinality is not quite a new invariant of metric spaces. It was previously
discovered (though not much developed) in a completely different context:

Andrew Solow, Stephen Polasky, Measuring biological diversity,
Environmental and Ecological Statistics 1 (1994), 95–107.

The relationship between cardinality of a metric space, entropy of a
probability space, and diversity of an ecosystem is discussed here:

Tom Leinster, Entropy, diversity and cardinality (part 2), post at
The n-Category Café, 7 November 2008, http://golem.ph.utexas.
edu/category/2008/11/entropy diversity and cardinal 1.html

The result on cardinality and the exponential of maximal entropy has not
been published. ‘Well-separated’ means that the distance between distinct
points is > 1

2 log(N − 1), where N is the number of points of A.

http://www.maths.gla.ac.uk/~tl/calais
http://golem.ph.utexas.edu/category/2008/11/entropy_diversity_and_cardinal_1.html
http://golem.ph.utexas.edu/category/2008/11/entropy_diversity_and_cardinal_1.html

