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Elliptic Systems with
a Heterogeneous Coefficient
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A Second Order Elliptic PDE

Incompressible, single phase flow in a porous medium:
u = −aε∇p in Ω ⊂ Rd (Darcy’s law)

∇ · u = f in Ω (Conservation)

u · ν = 0 on ∂Ω (BC for simplicity)

p is the fluid pressure

u is the (Darcy) velocity of the fluid

aε is the medium permeability, heterogeneous on a scale ε

f is the source/sink term (i.e., the wells).

Objective: Given aε and f :

• Find an accurate approximation of u and p

• Respect the principle of mass conservation

Both properties are critical in many applications.
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The PDE in Mixed Variational Form

Let (·, ·) denote the L2(Ω) or (L2(Ω))d inner product.

Find p ∈W = L2(Ω)/R and u ∈ V = H0(div; Ω) such that

(a−1
ε u,v)= −(∇p,v) = (p,∇ · v) ∀ v ∈ V (Darcy’s law)

(∇ · u, w) = (f, w) ∀ w ∈W (Conservation)

where

H0(div; Ω) = {v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω) and v · ν = 0 on ∂Ω}

Remark: The mixed form preserves the conservation equation, and so

allows locally conservative approximations.

Institute for Computational Engineering and Sciences 6 of 62
Center for Subsurface Modeling, The University of Texas at Austin



Abstract Saddle-Point Problem

Find p ∈W and u ∈ V such that

A(u,v)− (p,∇ · v) = G(v) ∀ v ∈ V

(w,∇ · u) = F (w) ∀ w ∈W

Theorem (Babuška 1973; Brezzi 1974). Suppose A is a continuous,

symmetric bilinear form, coercive on V ∩ ker(∇·), and ∃γ > 0 such that

inf
w∈W

sup
v∈V

(w,∇ · v)

‖w‖W ‖v‖V
≥ γ

Then ∃! solution (p,u) ∈W ×V, and

‖p‖W + ‖u‖V ≤ C{‖F‖W ∗ + ‖G‖V∗}
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Mixed Finite Element Approximation

Define

Th a reasonable finite element partition of Ω

h the maximal element diameter

Wh ×Vh any reasonable mixed finite element spaces in W ×V

Find p ∈Wh ⊂W and u ∈ Vh ⊂ V such that

(a−1
ε uh,v) = (ph,∇ · v) ∀ v ∈ Vh (Darcy’s law)

(∇ · uh, w) = (f, w) ∀ w ∈Wh (conservation)

Theorem: For mixed velocity spaces containing Pk−1 on each element,

‖u− uh‖0 ≤ C‖u‖khk = O(hk)

‖p− ph‖0 ≤ C‖p‖k+1h
k = O(hk)

‖∇ · (u− uh)‖0 ≤ C‖∇ · u‖khk = O(hk)

where ‖ · ‖k is the norm in Hk(Ω).
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Natural Heterogeneity
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The Problem of Scale

Suppose aε varies on the the spatial scale ε. Then

|u| = O(ε−1) and |Dku| = O(ε−k−1)

Theorem: For mixed velocity spaces containing Pk−1 on each element,

‖u− uh‖0 ≤ C‖u‖khk = ε−1O
(
h

ε

)k
• If h > ε, this is not small!

• To resolve p and u, we need h < ε. That is, we must resolve aε.

Problem: A direct computation is not feasible!

• Ω ∼ 104 × 104 × 102 m3

• h ∼ 10−1 m

=⇒ a grid of size 105 × 105 × 103 = 1013 elements.

Currently, perhaps the largest supercomputers can handle 107 elements.
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Approaches

We consider the following four approaches:

1. Homogenization and Upscaling: (Bensoussan, Lions & Papanicolaou

1978; Sanchez-Palencia 1980)

Replace the coefficient aε in the differential equation by one that

is easier to resolve.

2. Multiscale Finite Elements: (Babuška & Osborn 1983; Babuška,

Caloz & Osborn 1994; Hou & Wu 1997; Chen & Hou 2003)

Define the finite element space to better capture fine scales.

3. Variational Multiscale Method: (Hughes 1995; Arbogast, Minkoff &

Keenan 1998; Arbogast & Boyd 2006)

Modify the variational form to better captures fine scales.

4. Domain Decomposition and Mortar Methods: (Schwartz 1870;

Arbogast, Pencheva, Wheeler & Yotov 2007)

Divide the problem into weakly coupled small subdomains that

can be resolved.
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Homogenization and Upscaling
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Volume Averaging for Effective Properties

We want to solve the problem on a coarse grid.

Upscaling: The system is represented on a coarser scale by defining

average or effective macroscopic parameters in place of the true

parameters (in our case, aε).
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Simple Averaging
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A Naive Example

Consider 1-D. Select η > 0 as an averaging window and define the

average

ψ̄(x) =
1

η

∫ x+η/2

x−η/2
ψ(ξ) dξ

Upscale the micromodel to the macromodel{
u = −aε∇p

∇ · u = f
=⇒

 ū = −aε∇p
?
= −ā∇p̄

∇ · ū ?
= ∇ · u = f̄

Fundamental problem in upscaling: Nonlinearities!

average of F (x) 6= F (average of x)
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What Average?

Suppose upscaling works. What average should we take?

• Arithmetic average: ā =
1

n

n∑
i=1

ai.

• Harmonic average: ā =
(

1

n

n∑
i=1

1

ai

)−1
.

The reciprocal of the average of the reciprocals. Emphasizes the

small values.

• Something else?
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Some Numerical Results using Averaging

Consider a small 2-D problem. Log-permeability and local averages:
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32× 32 8× 8 arithmetic average 8× 8 harmonic average

Relative errors: Arithmetic 0.43, Harmonic 0.40
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Anisotropy

Locally the medium is isotropic (i.e., the same in all directions).

However, ā should be a full tensor!

ā =

(
a11 a12
a21 a22

)
That is, ā is anisotropic.

�
��

�
��
�
��
�
��
�
�*A

A
A
A
A
A
A
AAU

ū = −ā∇p̄

Remark: It is not so easy to quantify this anisotropy.
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Mathematical Homogenization
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Periodicity

The solution u has high frequency wiggles due to the heterogeneity of aε.

x

u(x)

ū(x)
Can we find ū(x)

without knowing u(x)?

The wiggles are

irregular, so they are

hard to deal with.

• Assume that the heterogeneity is periodic, so that the wiggles are

regular, and thus easily identified.

[This is basically our closure assumption.]

• Let the period of oscillation be ε, and let ε→ 0. This should remove

the wiggles (at least in some weak sense).
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Obtaining Periodic Wiggles

Suppose that the domain Ω has a periodic structure with period εY . As

ε→ 0, we obtain our macro-scale model for the average flow.

Y

· · ·

Homogenization is very mathematical, and involves deep analysis of

partial differential equations.

Fortunately there is a simpler, more physical view of homogenization.

Institute for Computational Engineering and Sciences 21 of 62
Center for Subsurface Modeling, The University of Texas at Austin



Scale Separation

Scaling. We assume that the

space variable has both a slow

(x) and fast (y) component.

x ∼ x+ εy

At any point x, y allows us to

“see” the local details, which

may affect larger scales.

The details disappear as ε→ 0,

but not necessarily their

coarse-scale affects.

Ω

Y
u

u
B
B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
�
��

��
u

��
u

x x+ εy

y

0

Local periodicity. We can assume that aε is locally periodic:

aε(x) = a(x, y)

where a(x, y) is periodic in y but varies slowly in x.
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Formal Homogenization—1

Formal assumption: We assume without proof that we can expand the

true solution p(x) into a power series involving ε :

p(x) ∼ p0(x, y) + ε p1(x, y) + ε2p2(x, y) + · · ·

wherein y = x/ε and each pk is periodic in y.

Gradient scaling: Then

∇ ∼ ∇x + ε−1∇y

Procedure: We expect that

pε → p0 as ε→ 0

Substitute the formal expansion into the equations
uε = −aε∇pε in Ω

∇ · uε = f in Ω

uε · ν = 0 on ∂Ω

Equating terms with like powers of ε leads to

1. p0(x, y) = p0(x) only [i.e., homogenization removes y!]
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Formal Homogenization—2

2. Closure operator:

p1(x, y) =
∑
j

ωj(x, y) ∂jp0(x)

where the ωj solve the local cell problems:−∇y ·
[
a(x, y)∇yωj(x, y)

]
= ∇y ·

[
a(x, y)ej

]
in Ω× Y

ωj(x, y) is periodic in y

3. By local averaging over the cell Y ,
u0 = −a0∇p0 in Ω

∇ · u0 = f in Ω

u0 · ν = 0 on ∂Ω

wherein a0(x) can be computed as the tensor

a0,ij(x) =
1

|Y |

∫
Y
a(x, y)

(
∂
y
i ωj(x, y) + δij

)
dy

We have the homogenized permeability a0(x) and we can compute p0(x).
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Theoretical Convergence

Lemma: a0 is symmetric and positive definite:

ξTa0ξ =
∑
i,j

ξi a0,ij ξj > 0 for all vectors ξ

Thus, a0 has three principle eigenvectors and only positive eigenvalues.

Lemma (Voigt-Reiss Inequality): a0 lies between the harmonic and
arithmetic averages. More precisely, if

â =
(

1

|Y |

∫
Y

(a(x, y))−1 dy

)−1
and ā =

1

|Y |

∫
Y
a(x, y) dy

then

ξT âξ ≤ ξTa0ξ ≤ ξT āξ

Theorem: If the first order corrector is defined as

p1
ε = p0 + ε

∑
j

ωj(x, x/ε) ∂jp0(x) = p0(x) + ε p1(x, x/ε)

then
‖pε − p0‖0 ≤ Cε

‖∇(pε − p1
ε )‖0 ≤ C

√
ε
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A Numerical Result using Homogenization

In our small 2-D problem, we obtain the following.
Log-permeability and xx and yy local averages (xy = yx set to 0):
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32× 32 8× 8 homogenized avg 8× 8 harmonic average
Relative errors: Homogenized 0.36, Harmonic 0.40
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Limitations of the Homogenized Solution

1. p0 is approximated coarsely, and so has no microstructure, and

u0 = −a0∇p0 6≈ uε

2. p1
ε ≈ pε has microstructure, and

u1
ε = −aε∇p1

ε ≈ uε

but then

∇ · u1
ε 6≈ ∇ · uε

This means that the local conservation principle is not satisfied.

3. In the two-scale separation case, given aε(x), what is a(x, y)?

4. What about non-two-scale separation cases?

However, we use homogenization theory as a guide for the general case!
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Multiscale Numerics

Institute for Computational Engineering and Sciences 28 of 62
Center for Subsurface Modeling, The University of Texas at Austin



Multiscale Approach

Objective. We want to solve the problem in a way that:

• does not fully incorporate the problem dynamics (i.e., solves some

global coarse scale problem to resolution h > ε),

• yet captures significant features of the solution, by taking into

account the micro-structure (to resolution hf < ε).
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Multiscale Methods
(Sorry, this is a very incomplete list!)

• Multiscale finite elements
1. Babuška, Caloz & Osborn 1994
2. Hou & Wu 1997
3. Hou, Wu & Cai 1999
4. Efendiev, Hou & Wu 2000
5. Strouboulis, Babuška & Copps 2001
6. Chen & Hou 2003
7. Aarnes 2004
8. Aarnes, Krogstad & Lie 2006

• Multiscale finite volumes
1. Jenny, Lee & Tchelepi 2003
2. He & Ren 2004
3. Ginting 2004
4. Hesse, Mallison & Tchelepi 2008

• Heterogeneous multiscale
methods

1. E & Engquist 2003

• Variational multiscale analysis
1. Hughes 1995
2. Hughes, Feijóo, Mazzei & Quincy

1998
3. Arbogast, Minkoff & Keenan 1998
4. Brezzi 1999
5. Arbogast 2004
6. Arbogast & Boyd 2006

• Multiscale multilevel methods
1. Moulton, Dendy & Hyman 1998
2. Xu, Zikatanov 2004
3. Graham & Scheichl 2007
4. Van lent, Scheichl & Graham 2009

• Multiscale mortar methods
1. Arbogast, Pencheva, Wheeler &

Yotov 2007

• Multiscale basis optimization
1. Rath 2007 (Ph.D. dissertation)

Remark. These are all similar as a general method!
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Overall Multiscale Strategy

1. Localization. The full PDE problem is decomposed into many

small, local, coarse element subproblems (of scale h > ε).

2. Fine-scale effects. The local subproblems are given appropriate

boundary conditions and solved on the fine scale hf < ε (to resolve

variations in aε) to define a coarse scale multiscale finite element or

finite volume basis.

3. Global coarse-grid problem. This h-scale coarse basis is used to

approximate the solution globally.

4. Fine-grid reconstruction. The finite element basis encapsulates an

hf-scale fine representation of the solution.

Remarks.

• The problem is fully resolved on the fine scale.

• The problem is not fully coupled. The global problem is a reduced

degree-of-freedom system.

• Computational efficiency comes from divide-and-conquer:

(a) Small, localized subproblems are easily solved;

(b) The coupled global problem has only a few degrees of freedom

per coarse element, and so is relatively easily solved.
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The Nonmixed System:

Multiscale Finite Elements

(Define appropriate finite elements)

Institute for Computational Engineering and Sciences 32 of 62
Center for Subsurface Modeling, The University of Texas at Austin



The Standard Nonmixed Equations

The differential problem:{
−∇ · aε∇p = f in Ω

−aε∇p · ν = 0 on ∂Ω

A variational problem: Let

X = H1/R (The function space)

Aε(p, w) = (aε∇p,∇w) (A bilinear form)

F (w) = (f, w) (A linear form)

Find p ∈ X = H1/R such that

Aε(p, w) = F (w) ∀ w ∈ X

Galerkin’s method: Let Xh ⊂ X be a finite dimensional subspace.

Find ph ∈ Xh such that

Aε(ph, w) = F (w) ∀ w ∈ Xh
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A Simple Example—1
(Babuška and Osborn, 1983; Hou and Wu, 1997)
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True solution p
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2

Coefficient a > 0

Differential problem.  −(ap′)′ = 0, 0 < x < 1

p(0) = 0 and p(1) = 1

Variational Form. Let X = H1
0(0,1) =

{
w ∈ H1 : w(0) = w(1) = 0

}
Find p ∈ X + x such that

(ap′, w′) = 0 ∀ w ∈ X
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A Simple Example—2

Choose a uniform grid of five points: xi = i/4, i = 0,1,2,3,4.

Standard finite elements X̄h. At xi, define

#
#
#
#
#
#
#
#
#
#
#
#
# c

c
c
c
c
c
c
c
c
c
c
c
c

xi−1 xi xi xi+1︸ ︷︷ ︸
qi(xi−1) = 0 qi(xi) = 1 qi(xi+1) = 0

0 0.25 0.5 0.75 10   

0.25

0.5 

0.75

1   

• Set qi on the element boundary

• Linearly interpolate

• Join the pieces together continuously
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A Simple Example—3

Localize X to the element E = (xi−1, xi) as X(E) = H1
0(E)

Multiscale finite elements Xh. At xi, define

xi−1 xi xi xi+1︸ ︷︷ ︸
qi(xi−1) = 0 qi(xi) = 1 qi(xi+1) = 0

0 0.25 0.5 0.75 10
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1

• Set qi on the element boundary

• Solve the homogeneous problem on each element E:

Find qi ∈ X(E) + `i(x) such that

(aq′i, w
′)E = 0 ∀ w ∈ X(E)

where E is (xi−1, xi) or (xi, xi+1), using the appropriate linear function

`i(x) for the BC’s.

• Join the pieces together continuously
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A Simple Example—4
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Multiscale vs. Standard

solution

Remark: Actually, the multiscale solution is exact in 1-D.
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Galerkin Finite Elements

Standard finite elements.

• Set q̄i = `i(x) on the element boundary, where `i is an appropriate

simple polynomial on ∂E

• Use some polynomial interpolation

• Join the pieces together continuously to form X̄h = span{q̄i}

Multiscale finite elements.

• Set qi = `i(x) on the element boundary, where `i is an appropriate

simple function on ∂E (such as a polynomial)

• Solve the homogeneous problem on each element E:

Find qi ∈ X(E) + `i(x) such that

Aε(qi, w)E = 0 ∀ w ∈ X(E)

That is, solve the Dirichlet problems (on a fine grid){
−∇ · aε∇qi = 0 in E

qi = `i on ∂E

• Join the pieces together continuously to form Xh = span{qi}
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Multiscale Finite Element Method

We took the standard variational form and modified the finite elements

to incorporate Multiscale effects:

Multiscale space: Xh = span{qi} from solving local problems

Find qi ∈ X(E) + `i(x) such that

Aε(qi, w)E = 0 ∀ w ∈ X(E)

Multiscale method: Using the standard variational form

Find ph ∈ Xh such that

Aε(ph, w) = F (w) ∀ w ∈ Xh

Remark: The approach has a lot of flexibility, and there exist many

variants of the above procedure.
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Multiscale Structure of Xh

qi = q̄i + (qi − q̄i) ≡ q̄i + q′i

Find qi ∈ X(E) + q̄i such that

Aε(qi, w)E = 0 ∀ w ∈ X(E)
=⇒

Find q′i ∈ X(E) such that

Aε(q
′
i, w
′)E = Aε(q̄i, w

′)E
∀ w′ ∈ X(E)

• The q′i are “bubble functions”, defined locally in X(E) = H1
0(E).

• The q′i are fine-scale and contain the microstructure information.

• The q̄i are coarse-scale.

Theorem: Let X ′h = span{q′i}. Then

Xh = span{q̄i + q′i} ( X̄h ⊕X ′h

is a Hilbert space direct sum decomposition into coarse and fine scales.
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The Nonmixed System:

Variational Multiscale Method

(Modify the variational form)
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Nonstandard Nonmixed Equations—1

The differential problem:{
−∇ · aε∇p = f in Ω

−aε∇p · ν = 0 on ∂Ω

A two-scale variational problem: Let

X = X̄ ⊕X ′ = H1/R (The two-scale function space)

Aε(p, w) = (aε∇p,∇w) (A bilinear form)

F (w) = (f, w) (A linear form)

Find p = p̄+ p′ ∈ X̄ ⊕X ′ such that

Aε(p̄+ p′, w̄) = F (w̄) ∀ w ∈ X̄ (Coarse scales)

Aε(p̄+ p′, w′) = F (w′) ∀ w ∈ X ′ (Fine scales)

Remark: This is the same problem. It is merely viewed in two scales.
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Nonstandard Nonmixed Equations—2

Rewrite the fine scale equation as

Aε(p
′, w′) = F (w′)−Aε(p̄, w′) ∀ w ∈ X ′

This is a well defined problem for p′. It implicitly defines an affine

upscaling operator taking X̄ to → X ′.

Linear part: p̂′ : X̄ → X ′ satisfies

Aε(p̂
′(q̄), w′) = −Aε(q̄, w′) ∀ w ∈ X ′

Constant part: p̃′ ∈ X ′ satisfies

Aε(q̃
′, w′) = F (w′) ∀ w ∈ X ′

Upscaling operator: p̂′(·) + p̃′ : X̄ → X ′

p′ = p̂′(p̄) + p̃′

Given coarse scales, we can fine fine scales.
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Nonstandard Nonmixed Equations—3

Now the coarse scale equation is simply

Aε
(
p̄+p̂′(p̄), w̄

)
= F (w̄)−Aε(p̃′, w̄) ∀ w ∈ X̄

The effect of the fine scales is now manifest.

The upscaling operator says

Aε
(
p̂′(p̄), p̂′(w̄)

)
= −Aε

(
p̄, p̂′(w̄)

)
so, symmetrizing, we have

Aε
(
p̄+ p̂′(p̄), w̄ + p̂′(w̄)

)
= F (w̄)−Aε(p̃′, w̄) ∀ w ∈ X̄

Variational Multiscale Method: (for the differential problem)

Aε(p̄, w̄
)

= F(w̄) ∀ w ∈ X̄

where

Aε(p̄, w̄
)

= Aε
(
p̄+ p̂′(p̄), w̄ + p̂′(w̄)

)
F(w̄) = F (w̄)−Aε(p̃′, w̄)

Remark: The bilinear and linear forms are both modified.
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Choice of Hilbert Space Decomposition

To be useful, we need to localize the fine scales. Take

X ′ =
⊕
E

X(E) =
⊕
E

H1
0(E)

Then

X̄ = X/X ′ ' {q|e : e is a coarse edge}

Thus X̄ is determined by values on ∂E ∀E.
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Approximation—1

We use the standard space X̄h = {q̄h} and the multiscale fine space

X ′h = span{q′h} ⊂ X
′

That is, X ′ is localized and

X̄h ⊕X ′h ( X̄ ⊕X ′ = H1/R

Version 1: Find ph = p̄h + p′h ∈ X̄h ⊕X
′
h such that

Aε(ph, w) = F (w) ∀ w ∈ X̄h ⊕X ′h
But X̄h ⊕X ′h is a large space. In fact, p̄h and p′h are related, and the

solution is in a much smaller space.

Theorem: Since Galerkin methods minimize energy, the multiscale

solution minimizes energy in the large space X̄h ⊕X ′h. For these

methods, if one specifies the value of the finite elements on ∂E, then

the best approximation comes from using the finite element that

minimizes energy within E.
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Approximation—2

Version 2: By solving for the upscaling operator, we obtain

Find p̄h ∈ X̄h such that

Aε(p̄h, w̄) = F(w̄) ∀ w̄ ∈ X̄h
Now X̄h is very small, but we must find the upscaling operator to relate

q̄h and p′h(q̄h). Given a basis

X̄h = span{q̄i}

we solve a local Dirichlet problems for q̄i on element E

Aε(q̄i + p̂′(q̄i), w
′)E = 0 ∀ w ∈ X(E)

These are the same problems as in the multiscale finite element case, so

Xh = span{q̄i + p̂′(q̄i)}
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Approximation—3

Version 3: Find ph ∈ Xh such that

Aε(ph, w) = F (w)−Aε(p̃′, w) ∀ w̄ ∈ Xh

Theorem: Up to treatment of f (i.e., p̃′), the two approaches are the

same in this basic setting.

Remark: Unlike multiscale finite elements, the variational multiscale

method naturally handles nonzero f . Henceforth we will use this

correction in the multiscale finite element method as well.
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Variational Multiscale Method

We take standard finite elements and use the modified variational form
that incorporates the multiscale effects:

Standard space and upscaling operator: X̄h = span{q̄i}
Solve a local Dirichlet problems for q̄i on element E

Aε(q̄i + p̂′(q̄i), w
′)E = 0 ∀ w ∈ X(E)

and for

Aε(p̃
′, w′)E = F (w′)E ∀ w ∈ X(E)

Variational multiscale method 1: Find p̄h ∈ X̄h such that

Aε(p̄h, w̄) = F(w̄) ∀ w̄ ∈ X̄h
Finally

ph = p̄h + p̂′(p̄h) + p̃′

is your fine scale reconstruction.

Variational multiscale method 2: Find ph ∈ Xh = span{q̄i + p̂′(q̄i)} so that

Aε(ph, w) = F (w)−Aε(p̃′, w) ∀ w̄ ∈ Xh
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Some Numerical Examples
of mixed multiscale numerics
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Low Premeability Spot (10−16)

12× 12

fine

scale

2× 2

upscaled

2× 2

coarse

scale

2× 2

coarse

scale

using

coarse

average

a
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A Fluvial Subsurface Environment

K =   0.1 D
K =   1.0 D
K = 10.0 D

Permeability field K

(White & Horne, 1987)

0.75

0.65

0.6

Fine 30× 30

0.75

0.65

0.55

Upscaled to 6× 6

0.75

0.6

0.5

Average K 6× 6

0.75

0.65

0.
55

Upscaled to 3× 3
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A Quarter Five-spot Oil Reservoir Waterflood—1

Logarithm of the permeability

Fine 40× 40
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A Quarter Five-spot Oil Reservoir Waterflood—2

Water saturation contours at 100 days

Fine 40× 40 Fully upscaled to 5× 5
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A Quarter Five-spot Oil Reservoir Waterflood—3

Water saturation contours at 200 days

Fine 40× 40 Fully upscaled to 5× 5
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A Quarter Five-spot Oil Reservoir Waterflood—4

Water saturation contours at 500 days

Fine 40× 40 Fully upscaled to 5× 5
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A Quarter Five-spot Oil Reservoir Waterflood—5

Water saturation contours at 1000 days

Fine 40× 40 Fully upscaled to 5× 5
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A Quarter Five-spot Oil Reservoir Waterflood—6

Water saturation contours at 100 days

Fine 40× 40 Fully upscaled to 2× 2
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A Quarter Five-spot Oil Reservoir Waterflood—7

Water saturation contours at 500 days

Fine 40× 40 Fully upscaled to 2× 2
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A Quarter Five-spot Oil Reservoir Waterflood—8

Water saturation contours at 500 days

Fully upscaled to 5× 5 Coarse 5× 5
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Summary and Conclusions
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Summary and Conclusions

1. Heterogeneity can be difficult to resolve

• Derivatives scale as ε−1

• Direct simulation system is computationally too expensive

2. Effective macroscopic parameter upscaling has difficulty with

• Anisotropy

• Nonlinearities

3. Homogenization is mathematically rigorous, but

• Fails to give accurate locally conservative velocities

• Requires local periodicity (two-scale separation)

4. Multiscale numerics for nonmixed system to handle heterogeneity:

• Multiscale finite elements—define nonpolynomial finite elements

• Variational multiscale method—modify the variational form

5. Examples show mixed multiscale numerics can be very effective
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