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Second Order Elliptic PDE’S in Mixed Form

The differential problem:
u = −aε∇p in Ω

∇ · u = f in Ω

u · ν = 0 on ∂Ω
Flow in porous media

The mixed variational problem:

Find p ∈W = L2/R and u ∈ V = H0(div) such that

(a−1
ε u,v) = (p,∇ · v) ∀ v ∈ V (Darcy’s law)

(∇ · u, w) = (f, w) ∀ w ∈W (conservation)

Remark: The mixed form preserves the conservation equation, and so

allows locally conservative approximations. This is a critical property in

many applications.

Difficulty: Fine-scale variation in aε (the permeability) leads to fine-scale

variation in the solution (u, p).

Solution: Divide and Conquer!

Use ideas from domain decomposition to control the scales.
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Domain Decomposition
and Mortar Methods
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Domain Decomposition for Mixed Methods

Glowinski and Wheeler (1988) defined domain decomposition for mixed
methods by iterating on the Dirichlet-to-Neumann map.

Algorithm: Given the pressure λ on the subdomain interfaces Γ, one
computes the flow locally. Based on the flux mismatch on Γ (i.e., the
jump in u · ν), one updates λ using conjugate gradients.

Once converged, the full fine-scale problem is solved.
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Advantages:

• Allows great flexibility in handling interdomain multiphysics (different
physical models in different subdomains).
• Well suited to parallel computation.
• Will show it allows us to handle interdomain multiscale aspects.
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Mortar Domain Decomposition Mixed Methods

Bernardi, Maday, and Patera (1994) defined mortar methods to glue the
subdomains together weakly when the subdomain grids do not match.

Mixed Mortar Methods: Arbogast, Cowsar, Wheeler, & Yotov (2000)
extended the mortar idea to mixed methods, using a continuous or
discontinuous linear mortar λ.
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The idea was to use grid

spacings of O(h) for all grids.

Theorem. Approximate u and p in Pk−1(T Ω
h ) and λ in Pk(T Γ

h ). Then

‖∇ · (u− uh)‖0 ≤ C‖f‖khk = O(hk)

‖u− uh‖0 ≤ C‖p‖k+1h
k = O(hk)

‖p− ph‖0 ≤ C
(
‖p‖k+1 + ‖f‖k

)
hk = O(hk)

Since λ lives on Γ, we lose 1/2-derivative going to Ω, or h−1/2. Thus we
need polynomials of degree 1 (actually 1/2) more.

Institute for Computational Engineering and Sciences 6 of 57
Center for Subsurface Modeling, The University of Texas at Austin



Multiscale Aspects

The mixed mortar method is similar to standard multiscale techniques.

• Multiscale finite elements.

• Variational multiscale Method.

1. Localization. Divide Ω into many small subdomains (or coarse

elements of scale H), over which the original PDE is imposed.

2. Fine-scale effects (resolution). The subdomains are given

Dirichlet boundary conditions p = λ on Γ and solved on the fine scale

h to define the local solution.

3. Global coarse-grid interface problem (coupling). The weak flux

mismatch (jump in u · ν) on Γ is used to define a better λ on scale h,

and we iterate the previous step until convergence is attained.

4. Fine-grid representation of the solution. With mortar grid scale

h < ε, we obtain a fully resolved and fully coupled approximation.

Idea: Let us relax the coupling dynamics as in multiscale methods!
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The Multiscale Mixed Mortar Method
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Basic Idea of the Multiscale Mixed Mortar Method

1. Localization. Divide Ω into many small subdomains (or coarse

elements of scale H), over which the original PDE is imposed.

2. Fine-scale effects. The subdomains are given Dirichlet boundary

conditions p = λ on Γ and solved on the fine scale h to define the

local solution.

3. Global coarse-grid (interface) problem. The weakly defined flux

mismatch (jump in u · ν) on Γ is used to define a better λ on scale

H > h, and we iterate the previous step until convergence is attained.

4. Fine-grid representation of the solution. We obtain a fully

resolved and well coupled approximate solution if λ is approximated

in a higher order space.

By using a higher order mortar

approximation, we compensate for

the coarseness of the grid and

maintain good (fine scale) overall

accuracy. ×
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Multiscale Resolution and Subdomain Coupling

1. The subdomain problems are fully resolved on the fine scale.

2. The system dynamics are not fully coupled between subdomains.

• The global problem is a higher order but reduced

degree-of-freedom system.

• Computational efficiency comes from divide-and-conquer:

(a) Small, localized subproblems are easily solved;

(b) The coupled global problem involves far fewer degrees of

freedom than the full fine-grid system (a few per coarse

element), and so is relatively easily solved.
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Detailed Description of the Method
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Domain Decomposition Variational Form

Differential Equations:

Γij = ∂Ωi ∩ ∂Ωj Γ =
⋃
i<j

Γij Γi = ∂Ωi ∩ Γ



a−1u = −∇p in Ωi (subdomain Darcy’s law)

∇ · u = f in Ωi (subdomain conservation)

ui · νi + uj · νj = 0 on Γij (conservation on interface Γ)

p|Ωi
= p|Ωj

on Γij (continuity of p on Γ)

p = 0 on ∂Ω (BC for simplicity)

Variational form: Find u ∈ H(div; Ωi), p ∈ L2(Ωi), λ = p ∈ H1/2(Γij):
(a−1u,v)Ωi

= (p,∇ · v)Ωi
− 〈λ,v · νi〉Γi ∀v ∈ H(div; Ωi)

(∇ · u, w)Ωi
= (f, w)Ωi

∀w ∈ L2(Ωi)∑
i

〈u · νi, µ〉Γi = 0 ∀µ ∈ H1/2(Γij)

Remark. The last equation enforces continuity of flux on Γ.
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Multiscale Mortar Mixed Method

Key idea. On the interface
• Use only a few degrees of freedom

(manage the linear algebra).

• Use higher order approximation

(maintain accuracy). ×
×
×
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HFinite element spaces.

• Subdomain. Vh,i ×Wh,i is usual mixed space on mesh h > 0 on Ωi.

• Mortar. MH,ij is continuous or discontinuous on mesh H > h on Γij.

Mortar method: Find uh ∈ Vh, ph ∈Wh, λH ∈MH such that
(a−1uh,v)Ωi

= (ph,∇ · v)Ωi
−〈λH ,v · νi〉Γi ∀v ∈ Vh,i

(∇ · uh, w)Ωi
= (f, w)Ωi

∀w ∈Wh,i∑
i

〈uh · νi, µ〉Γi = 0 ∀µ ∈MH

Remark. The last equation enforces weak continuity of flux on Γ.
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An Interface Problem

Define the bilinear and linear forms on MH by

dH(λ, µ) =
∑
i

dH,i(λ, µ) = −
∑
i

〈ûh(λ) · νi, µ〉Γi

gH(µ) =
∑
i

gH,i(µ) =
∑
i

〈ũh · νi, µ〉Γi

where (ûh(λ), p̂h(λ)) ∈ Vh ×Wh solves (λ given, f = 0) (a−1ûh(λ),v)Ωi
= (p̂h(λ),∇ · v)Ωi

− 〈λ,v · νi〉Γi ∀v ∈ Vh,i

(∇ · ûh(λ), w)Ωi
= 0 ∀w ∈Wh,i

and (ũh, p̃h) ∈ Vh ×Wh solves (λ = 0, f given) (a−1ũh,v)Ωi
= (p̃h,∇ · v)Ωi

∀v ∈ Vh,i

(∇ · ũh, w)Ωi
= (f, w)Ωi

∀w ∈Wh,i

Theorem.
dH(λH , µ) = gH(µ) ∀µ ∈MH

if, and only if,

uh = ûh(λH) + ũh and ph = p̂h(λH) + p̃h
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Domain Decomposition Iteration
(Glowinski & Wheeler, 1988; A., Cowsar, Wheeler & Yotov, 2000)

Interface problem. Find λH ∈MH such that

dH(λH , µ) = gH(µ) ∀µ ∈MH

Theorem. The interface bilinear form dH(·, ·) is symmetric and positive

definite on MH.

Thus, our problem reduces to a symmetric and positive definite linear

system, and it can be solved by conjugate gradient iteration (for

example). The computations involve:

• Once solving for (ũh, p̃h) to get gH(µ).

• Many times solving for
(
ûh(λiH), p̂h(λiH)

)
to get dH(λiH , µ).

This seems like a natural way to obtain the solution.
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Relation to Multiscale Finite Elements
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An Interface Operator

Recall the bilinear form

dH(λ, µ) =
∑
i

dH,i(λ, µ) = −
∑
i

〈ûh(λ) · νi, µ〉Γi

where (ûh(λ), p̂h(λ)) ∈ Vh ×Wh solves (a−1ûh(λ),v)Ωi
= (p̂h(λ),∇ · v)Ωi

− 〈λ,v · νi〉Γi ∀v ∈ Vh,i

(∇ · ûh(λ), w)Ωi
= 0 ∀w ∈Wh,i

Proposition.
dH(λ, µ) =

(
a−1ûh(λ), ûh(µ)

)
Proof: Take v = ûh(µ) and use symmetry. �

Remark. We note that

dH,i(µ, µ) = (a−1ûh(µ), ûh(µ))Ωi

∼ (a∇p̂h(µ),∇p̂h(µ))Ωi
= ‖a1/2p̂h(µ)‖21

So ‖ · ‖dH = dH(·, ·)1/2 is a norm, essentially a discrete H1/2-norm on Γ.
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Mortar Degrees of Freedom

Let {µ`} be a basis for MH = span{µ`}. Define

v` = ûh(µ`) and w` = p̂h(µ`)

Then

λH =
∑
`

λ`µ` and uh =
∑
`

λ`v` + ũh and ph =
∑
`

λ`w` + p̃h

Find {λ`} such that ∑
`

λ` dH(µ`, µk) = gH(µk) ∀k

is equivalent to∑
`

λ`(a
−1v`,vk) = (f, p̂h(µk))− (a−1ũh, ûh(µk))

That is, find (uh, ph) ∈ span{(v`, w`)}+ (ũh, p̃h) such that

(a−1uh,vk) = (f, wk)

This is another natural way to solve the problem!
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Multiscale Finite Elements

Let
Nh,H = span

{(
v`
w`

)}
= span

{(
ûh(µ`)
p̂h(µ`)

)}
⊂
(
Vh
Wh

)

Multiscale finite element formulation. Find

(
uh
ph

)
∈ Nh,H +

(
ũh
p̃h

)
so that

(a−1uh,v) = (f, w) ∀
(
v
w

)
∈ Nh,H

Remarks. This is an unusual multiscale finite element method!

• We couple pressures and velocities.

• We allow flow on all edges.

• We add a constant term to the

solution, as is typical of variational

multiscale methods.

• Our multiscale finite elements are

locally defined over the subdomains

(i.e., the course elements).
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Relation to the Variational Multiscale Method
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Weakly Continuous Velocity Formulation

Define the Weakly continuous velocities:

Vw = {v ∈ Vh : 〈v · ν, µ〉 = 0 ∀µ ∈MH}

The method reduces to: Find uh ∈ Vw, ph ∈Wh, such that
(a−1uh,v) =

∑
i

(ph,∇ · v)Ωi
∀v ∈ Vw

∑
i

(∇ · uh, w)Ωi
= (f, w) ∀w ∈Wh
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Hilbert Space Decomposition

Define the Weakly zero velocities:

V′w = {v ∈ Vw : 〈v · ν, µ〉Γi = 0 ∀µ ∈MH and ∀i}

Note that (if constants are in MH), on each Ωi,

∇ ·V′w = {w ∈W : w is orthogonal to constants} = W ′w

Decomposition: With V̄w ' Vw/V′w,

Vw = V̄w ⊕V′w

Moreover, on each Ωi,

∇ · V̄w = {w ∈W : w is constant} = W̄w
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Variational Multiscale Method View

The method is: Find uh = ūw + u′w ∈ Vw, ph = p̄w + p′w ∈Wh, such that
(a−1(ūw + u′w), v̄w) =

∑
i

(p̄w,∇ · v̄w)Ωi
∀ v̄w ∈ V̄w

∑
i

(∇ · ūw, w̄w)Ωi
= (f, w̄w) ∀ w̄w ∈ W̄w

and 
(a−1(ūw + u′w),v′w) =

∑
i

(p′w,∇ · v′w)Ωi
∀v′w ∈ V′w∑

i

(∇ · u′w, w′w)Ωi
= (f, w′w) ∀w′w ∈W ′w

Since the fine-scale equation is well posed, it defines an affine closure

operator and we obtain(
a−1(ūw + û′w(ūw))︸ ︷︷ ︸, v̄w) =

∑
i

(p̄w,∇ · v̄w)Ωi
− (a−1ũ′w, v̄w) ∀ v̄w ∈ V̄w

û′w · ν 6= 0

This is formally the same variational multiscale method as before, but

now we use nonconforming elements with greater flexibility near ∂Ωi.
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A Nonstandard Multiscale Error Analysis
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A Technical Condition

Let Qh,i be L2(Γi)-projection onto Vh,i · νi|Γi.

Assumption. There exists C, independent of h and H, such that

‖µ‖0,Γij ≤ C(‖Qh,iµ‖0,Γij + ‖Qh,jµ‖0,Γij) ∀µ ∈MH,ij

This condition says that the mortar space cannot be too rich compared

to the normal traces of the subdomain velocity spaces. This is not a

problem in our case h < H.
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A-Priori Error Estimates

Theorem. There exists C, independent of h and H, such that

‖u− uh‖0 ≤ C
{
‖u‖khk + ‖p‖m+1/2H

m−1/2

+ ‖u‖k+1/2h
kH1/2

}
= O(hk +Hm−1/2)

‖p− ph‖0 ≤ C
{
‖p‖khk + ‖p‖m+1/2H

m+1/2

+ (‖f‖k + ‖u‖k)hkH

+ ‖u‖k+1/2h
kH3/2

}
= O(hk +Hm+1/2)

|||p− ph||| ≤ C
{
‖p‖m+1/2H

m+1/2

+ (‖f‖k + ‖u‖k)hkH

+ ‖u‖k+1/2h
kH3/2

}
= O(hkH +Hm+1/2)

Assume a is diagonal and Raviart-Thomas spaces on rectangles, then

|||u− uh||| ≤ C
{
‖p‖m+1/2H

m−1/2

+ ‖u‖k+1/2h
kH1/2

}
= O(hkH1/2 +Hm−1/2)

Remarks. Optimal velocity superconvergence for RT0 (k = 1)

• H = O(h1/(m−1)) gives error O(h1+1/2(m−1)).
• quadratic mortars (m = 3) use H = O(h1/2) for error O(h5/4).
• cubic mortars (m = 4) use H = O(h1/3) for error O(h7/6).
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Polynomial Approximation Scale Problem

The a-priori error estimates suffer from the typical polynomial

approximation scale problem. Assume h < ε < H.

• h < ε fully resolves the problem.

• H > ε does not resolve the problem.

We have

|∇p| = O(ε−1) and |Dkp| = O(ε−k)

so

‖u− uh‖0 ≤ C
[
(h/ε)k+1 + (H/ε)m+1/2 + (h/ε)k+1(H/ε)1/2

]
‖p− ph‖0 ≤ C

[
(h/ε)k+1 + (H/ε)m+3/2 + (h/ε)k+1(H/ε)3/2

]

Adaptivity. We turn to an a-posteriori error analysis and an iterative grid

refinement process to resolve the coupling dynamics.
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Explicit Residual-Based Estimators: Upper Bounds

For all E ∈ T Ω
h and τ ∈ T Γ

H ,

ω2
E = ‖a−1uh +∇ph‖2Eh

2
E + ‖f −∇ · uh‖2Eh

2
E (Residuals)

+ ‖λH − ph‖2∂E∩ΓhE (Pressure mismatch)

ω2
τ =

∑
E∈Eτ

‖[uh · ν]‖2∂E∩τH
3
τ (Flux mismatch)

Saturation Assumptions. We need sufficient resolution that the coarse

approximation contains some “reasonable” information about the

solution, so that we can detect inadequate resolution. These saturation

assumptions are justified by the a-priori error theorem.

Theorem. There exists a constant C, independent of h and H, such that

‖p− ph‖0 ≤ C
{ ∑
E∈T Ω

h

ω2
E +

∑
τ∈T Γ

H

ω2
τ

}1/2

‖u− uh‖0 ≤ C
{ ∑
E∈T Ω

h

h−2
E ω2

E +
∑
τ∈T Γ

H

H−2
τ ω2

τ

}1/2
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Explicit Residual-Based Estimators: Lower Bounds

Theorem. There exists a constant C, independent of h and H, such that∑
E∈T Ω

h

ω2
E +

∑
τ∈T Γ

H

ω2
τ ≤ C

{
‖p− ph‖20 +

∑
E∈T Ω

h

h2
E‖u− uh‖2H(div;E)

+
∑

E∈T Ω
h

hE‖λ− λH‖2∂E∩Γ +
∑
τ∈T Γ

H

∑
E∈Eτ

h−1
E H3

τ ‖u− uh‖2H(div;E)

}

Remark. Generally, the terms after ‖p− ph‖20 are of higher order. For
RT0 and quadratic mortars, the optimal choice H = O(h2/5) gives

C1

{ ∑
E∈T Ω

h

ω2
E +

∑
τ∈T Γ

H

ω2
τ +O(h2k+2.2)

}1/2

≤ ‖p− ph‖0 ≤ C2

{ ∑
E∈T Ω

h

ω2
E +

∑
τ∈T Γ

H

ω2
τ +O(h2k+3)

}1/2

Thus, the error ‖p− ph‖0 is dominated above and below by our local
residual estimators, for small enough h, so this quantity is an efficient
and reliable indicator of the pressure error.
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Some Remarks

1. We also developed more complex implicit error estimators which

require solving local (element) boundary value problems. These give

optimal upper and lower bounds for the velocity error.

2. Goal-oriented adaptivity would also be natural in this context, and

would generally result in much less mortar refinement.

3. Pencheva, Vohralik, Wheeler, and Wildey (2010) recently improved

the estimators to avoid saturation assumptions.
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A Nonstandard Multiscale Analysis

Our analysis is not a standard multiscale analysis.

• A-posteriori error indicators are computed from the input data and

the computed solution.

• The error indicators are used to drive adaptive mesh refinement

(AMR).

• Through AMR iteration, the numerical solution is obtained on

appropriate subdomain and mortar grids.

• We detect the multiscale nature of the solution through this

a-posteriori analysis of intermediate approximation results.

×
×
×
×

×

×

×

Ω1 Ω2

Ω
λ

Γ
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×

×

×

×

Ω1 Ω2

Ω
λ
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7→ . . .
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Adaptive Mesh Refinement

Grid refinement algorithm

1. Solve the problem on a coarse subdomain and mortar grid.

2. For each subdomain Ωi:

(a) Compute ωi =

( ∑
E∈T Ωi

h

ω2
E +

∑
τ∈T Γi

H

ω2
τ

)1/2

.

(b) If ωi >
1
2 maxj ωj, refine T Ωi

h .

3. For each interface Γi,j, if either Ωi or Ωj has been refined m− 1

times, refine T Γij
H .

4. Solve the problem on the refined grid. If either the desired error

tolerance or the maximum refinement level has been reached, exit;

otherwise, go to Step 2.

Remarks.

• We employ pressure error estimators, since it is efficient and reliable.

• The mortar grids are refined if either adjacent subdomain grid is

refined sufficiently many times.
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Improvements via Homogenization and
a Standard Multiscale Analysis
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An Equation for the Error

Weakly continuous velocities: Let

Vh,H,0 =
{
v ∈ Vh :

∑
i

〈vi · νi, µ〉Γi = 0 ∀µ ∈MH

}
.

If we work over the weakly continuous velocities, we have
(a−1
ε (u− uh),v) =

∑
i

{
(p− ph,∇ · v)Ωi

−〈p,v · ν〉Γi
}
∀v ∈ Vh,H,0∑

i

(∇ · (u− uh), w)Ωi
= 0 ∀w ∈Wh

Troublesome term: A “nonconforming error” term arises because p is

not continuous. However, v is weakly continuous, so

〈p,v · ν〉Γi = 〈p− w,v · ν〉Γi for any w ∈MH

leads to coarse H-level approximation.

• This is a pure approximation problem.

• Polynomial approximation gives O(Hm−1/2).

Idea: Can we use multiscale ideas to improve this?
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Homogenization

Suppose that aε is locally periodic of period ε. Then

aε(x) = a(x, x/ε)

where a(x, y) is periodic in y of period 1 on the unit cube Y .

Let a0 be the homogenized permeability matrix, defined by

a0,ij(x) =
∫
Y
a(x, y)

(
δij −

∂ωj(x, y)

∂yi

)
dy

where, for fixed x, ωj(x, y) is the Y -periodic solution of

−∇y · (a∇yωj) = ∇ · (aej)

Homogenized solution: Let (u0, p0) solve
u0 = −a0∇p0 in Ω

∇ · u0 = f in Ω

p0 = 0 on ∂Ω

Then (u0, p0) is a smooth “approximation” of (u, p).
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Homogenization Inspired Approximation

Define the first order corrector

pε1(x) = p0(x)− ε
∑
j

ωj(x, x/ε)
∂p0

∂xj

Theorem. ‖∇[p− pε1]‖0 ≤ C
{
ε‖∇p0‖1 +

√
ε|∂Ω| ‖∇p0‖0,∞

}
Structure: Although p is not smooth, it is a fixed operator (based on the

microstructure) of a smooth function p0. Thus we should approximate

p(x) ≈ pε1(x) =

(
1− ε

∑
j

ωj(x, x/ε)
∂

∂xj

)
p0(x) ≈

(
1− ε

∑
j

ωj(x, x/ε)
∂

∂xj

)
q(x)

where q is some polynomial.

A Multiscale Mortar Space: Let

MH =

{(
1− ε

∑
j

ωj(x, x/ε)
∂

∂xj

)
q
∣∣∣
Γ

: q ∈ Pm−1(T Γ∗
H )

}

wherein Γ is extended into the domain to form Γ∗.
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A Standard Multiscale Error Analysis

Theorem. There exists a constant C, independent of h and H, such that

‖u− uh‖0 ≤ C
{
‖u‖khk + ‖p0‖m+1/2H

m−1/2 +
√
ε
}

‖∇ · (u− uh)‖0 ≤ C‖∇ · u‖khk

Remarks.

• h < ε, so the first term is small (i.e., fully resolved).

• p0 is smooth, so the second term is small.

•
√
ε is the standard term from the boundary corrector from

homogenization theory, and is assumed small.

• There is no numerical resonance (i.e., no ε/H term)!
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Some Numerical Results
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Base Case

• Domain Ω is the unit square or cube.

• Use lowest order Raviart-Thomas spaces (RT0).

• Use Dirichlet boundary conditions on the left and right edges, and

Neumann on the rest of the boundary.

• The domain is equally divided into four (or eight in 3-D) subdomains.

• Solve using congugate gradients and a balancing preconditioner.

• Continuous and discontinuous quadratic and linear mortars (m = 3,2).

• We use the scaling H = h1/2 for m = 3 and H = 2h for m = 2, which

is optimal for superconvergent velocities.

P(T Γ
H ) H ||p− ph|| ||u− uh|| |||p− ph||| |||u− uh||| |||p− lH |||

Full a Diag a

2 h1/2 1 1 1.5 1.25 1.25 1.5

1 2h 1 1 2 1.5 1.5 2
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Ex. 1—A Smooth Case with a Full Tensor—1

A 2-D smooth problem with known analytic solution

p(x, y) = x3y4 + x2 + sin(xy) cos(y)

and full tensor coefficient

a =

(
(x+ 1)2 + y2 sin(xy)

sin(xy) (x+ 1)2

)
.

• Ω = (0,1)2

• Use lowest order Raviart-Thomas spaces (RT0).

• Use Dirichlet boundary conditions on the left and right edges, and

Neumann on the rest of the boundary.

• We use the scaling H = h1/2 for m = 3 and H = 2h for m = 2, which

is optimal for superconvergent velocities.

P(T Γ
H ) H ||p− ph|| ||u− uh|| |||p− ph||| |||u− uh||| |||p− lH |||

Full a Diag a

2 h1/2 1 1 1.5 1.25 1.25 1.5

1 2h 1 1 2 1.5 1.5 2
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Ex. 1—A Smooth Case with a Full Tensor—2

Computed pressure and velocity on nonmatching grids.

Discontinuous quadratic mortars Discontinuous linear mortars
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Ex. 1—A Smooth Case with a Full Tensor—3

Discontinuous quadratic mortars and nonmatching grids.

1/h Iter Cond ||p− ph|| ||u− uh|| |||p− ph||| |||u− uh||| |||p− lH |||
4 8 18.8 2.64E-1 2.03E-1 4.62E-2 2.13E-2 4.45E-2

16 7 2.5 6.37E-2 4.86E-2 2.83E-3 1.82E-3 2.72E-3
64 7 2.3 1.59E-2 1.21E-2 1.75E-4 1.59E-4 1.69E-4

256 8 3.0 3.98E-3 3.03E-3 1.09E-5 1.68E-5 1.06E-5

Rate 1.01 1.01 2.01 1.72 2.01
Theor 1.00 1.00 1.50 1.25 1.25

Discontinuous linear mortars and nonmatching grids.

1/h Iter Cond ||p− ph|| ||u− uh|| |||p− ph||| |||u− uh||| |||p− lH |||
4 4 1.31 2.63E-1 2.04E-1 4.54E-2 2.35E-2 4.55E-2

16 7 2.12 6.37E-2 4.86E-2 2.82E-3 2.30E-3 2.86E-3
64 8 3.27 1.59E-2 1.21E-2 1.75E-4 2.38E-4 1.78E-4

256 8 5.02 3.98E-3 3.03E-3 1.09E-5 2.74E-5 1.11E-5

Rate 1.01 1.01 2.01 1.63 2.00
Theor 1.00 1.00 2.00 1.50 1.50

Conclusions.
• Convergence rates hold, and may be better than advertised.
• The solution procedure is efficient (# iterations ∼ constant).
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Ex. 2—A Discontinuous Permeability—1

A 2-D discontinuous problem with

a =

I for 0 ≤ x < 1/2

10I for 1/2 < x ≤ 1

and known continuous solution with continuous normal flux at x = 1/2

p(x, y) =


x2y3 + cos(xy), 0 ≤ x ≤ 1/2,(

2x+ 9

20

)2
y3 + cos

(
2x+ 9

20
y

)
, 1/2 ≤ x ≤ 1,
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Ex. 2—A Discontinuous Permeability—2

Continuous quadratic mortars and nonmatching grids.

1/h Iter Cond ||p− ph|| ||u− uh|| |||p− ph||| |||u− uh||| |||p− lH |||
4 9 111.0 1.84E-2 6.20E-2 1.13E-3 4.58E-2 3.27E-3

16 14 25.5 4.37E-3 1.50E-2 8.07E-5 3.67E-3 2.40E-4
64 15 24.1 1.09E-3 3.73E-3 5.37E-6 6.45E-4 2.45E-5

256 16 30.3 2.72E-4 9.26E-4 3.70E-7 1.27E-4 2.97E-6

Rate 1.01 1.01 1.93 1.40 1.68
Theor 1.00 1.00 1.50 1.25 1.50

Continuous linear mortars and nonmatching grids.

1/h Iter Cond ||p− ph|| ||u− uh|| |||p− ph||| |||u− uh||| |||p− lH |||
4 5 16.8 1.84E-2 9.57E-2 1.28E-3 7.04E-2 5.23E-3

16 14 25.5 4.37E-3 1.75E-2 8.20E-5 7.76E-3 3.53E-4
64 22 43.2 1.09E-3 3.85E-3 5.10E-6 9.06E-4 2.18E-5

256 23 62.6 2.72E-4 9.28E-4 3.19E-7 1.11E-4 1.36E-6

Rate 1.01 1.11 2.00 1.55 1.99
Theor 1.00 1.00 2.00 1.50 2.00

Conclusion. We see similar results to the continuous case.
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Ex. 2—A Discontinuous Permeability—3

Domain decomposition studies.
• Fine grid 256× 256.

• Coarse grid 2× 2, 4× 4, or 8× 8 subdomains.

• Mortar grids consistent with the optimal velocity superconvergence

(H = h1/2 for quadratic mortars and H = 2h for linear mortars).

Continuous quadratic mortars.

Dom Iter ||p− ph|| ||u− uh|| |||p− ph||| |||u− uh||| |||p− lH |||
2× 2 16 4.97E-3 4.31E-3 1.61E-5 2.43E-5 1.37E-5
4× 4 23 4.97E-3 4.31E-3 1.62E-5 5.20E-5 2.48E-5
8× 8 23 4.97E-3 4.31E-3 1.63E-5 9.28E-5 3.83E-5

Continuous linear mortars.

Dom Iter ||p− ph|| ||u− uh|| |||p− ph||| |||u− uh||| |||p− lH |||
2× 2 23 4.97E-3 4.31E-3 1.61E-5 2.27E-5 1.35E-5
4× 4 36 4.97E-3 4.31E-3 1.61E-5 2.78E-5 2.27E-5
8× 8 39 4.97E-3 4.31E-3 1.61E-5 3.74E-5 3.41E-5

Conclusion. Larger subdomains give better results, and require less work.
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Ex. 3—A Heterogeneous Quarter-Five Spot—1

• Ω = (0,40)2

• Single mortar per coarse interface, H = 10, h = 1:

• Subdomain is 10× 10.

• Coarse problem is 4× 4.

• Use lowest order Raviart-Thomas spaces (RT0).

• Inject fluid in lower left, extract in upper right, no-flow boundary

conditions.

• Compare to fine-scale RT0 solution.

• Permeability varies by 104.
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Ex. 3—A Heterogeneous Quarter-Five Spot—2

RT0 (Fine) HMS-OS HMS

Speed (log scale) and Velocity
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Ex. 3—A Heterogeneous Quarter-Five Spot—3

RT0 (Fine) P1 P2

Speed (log scale) and Velocity
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Ex. 3—A Heterogeneous Quarter-Five Spot—4

Relative Errors with Respect to
the Fine-scale RT0 Solution

Pressure Velocity
Method L2 err max err L2 err max err

P1 0.199 0.145 0.416 0.804
P2 0.043 0.035 0.256 0.527

HMS 0.011 0.014 0.107 0.143
HMS-OS 0.009 0.013 0.082 0.136
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Ex. 4—Simple Channel—1

Permeability RT0 P1

P2 HMS HMS-OS
• Permeability: 10 (white), 1 (gray), and 0.1 on 30× 30 grid
• Speed and velocity on 3× 3 coarse grid with 10× 10 subgrid
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Ex. 4—Simple Channel—2

Pressure Velocity
Error Error

Method `2 `∞ `2 `∞

P1 0.0432 0.0168 0.168 0.360
P2 0.0104 0.0033 0.062 0.176

HMS 0.0074 0.0021 0.105 0.289
HMS-OS 0.0087 0.0034 0.067 0.120
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Ex. 5—SPE10–Layer 85 Test Example—1

x-permeability y-permeability RT0 (Fine)

• Single mortar per coarse interface

• Coarse problem is 3× 11. • Subdomain is 20× 20.
• Use lowest order Raviart-Thomas spaces (RT0).

• Inject fluid in lower left, extract in upper right, no-flow BC’s.
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Ex. 5—SPE10–Layer 85 Test Example—2

RT0 (Fine) HMS-OS HMS

Speed and Velocity

53 of 57



Ex. 5—SPE10–Layer 85 Test Example—3

RT0 (Fine) P1 P2

Speed and Velocity
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Ex. 5—SPE10–Layer 85 Test Example—4

Relative Errors with Respect to
the Fine-scale RT0 Solution

Pressure Velocity
Method L2 err max err L2 err max err

P1 0.064 0.027 0.399 0.743
P2 0.036 0.020 0.406 0.904

HMS 0.010 0.007 0.160 0.380
HMS-OS 0.006 0.003 0.106 0.318
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Summary and Conclusions
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Summary and Conclusions
1. A multiscale mortar mixed method was defined, involving:
• Localization into small subdomains (or coarse elements);
• Fine-scale effects through full resolution of local subproblems;
• Global coarse-grid problem for the mortar unknowns coupling

the subdomains through weak velocity continuity;
• Fine-grid construction of an approximate solution.

2. The multiscale mortar mixed method
• uses novel multiscale finite elements;
• is a nonconforming approximation in the variational multiscale

method.

3. An nonstandard multiscale analysis of errors shows:
• good a-priori estimates for resolved systems;
• computable a-posteriori error indicators;
• that adaptive mesh refinement can be used to capture microscales

in the solution as needed.

4. Homogenization theory suggests a multiscale mortar space.
• A standard multiscale analysis shows good multiscale convergence

with no numerical resonance.

5. Numerical results confirm the theory and demonstrate the
effectiveness of the method.

Institute for Computational Engineering and Sciences 57 of 57
Center for Subsurface Modeling, The University of Texas at Austin


