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Source localization with passive array of receivers

0 Z A

|A Array data: p(t,Zr), Zr=(r,z4), T€ A

Problem: Determine source location #x = (x4, 0) (source cross-
range z, and the range z 4 to the array).

e T his is the simplest imaging problem. Can be extended to
imaging reflectors with active arrays of sources and receivers.

Difficulty: We consider waveguides with fluctuating sound speed.
The fluctuations are typically small (1% — 3%) but their cumu-
lative long range effect is strong ~ p(t, 7)) loses coherence.




Goal of talk

e Using mathematical analysis based on modeling the wave speed
fluctuations with random processes:

1. Understand how the pressure field received at the array loses
coherence ~~ how and why widely used imaging methods fail.

2. Show how imaging can still be done with incoherent data.




Mathematical setup. Planar waveguide.

0] Z A

|A = (x,z), z€((0,X), zekR.

:E’;z (T, 25 = 0)

1 92%p(t, @) 0
- Ap(t,E) = f(t)—06(F —
BB = f() 8T 7)
p(t, %) = O, t <0
p(t,¥) = O, x € {0, X}.

e T he sound speed model is*
2
(0]

c?(%)

=14ev(@), ex1

v(Z) is a bounded, mean zero random process, stationary and
decorrelating fast enough in z.

*For simplicity ¢, = constant but ¢,(x) could be considered. Typicale = 1-3%



Step 1: Write the mathematical model of the data recorded at
the array: p(t,Zr) for & = (r,z4) and r € A.




Unperturbed waveguides (¢ = 0)

d .
e We have p(t,7) = /Q—Mﬁ(w,a':’)e_zm where
T

2PN 0Pp(w,d) _ - |
(cg + 8@,2) p(w, &) + 5.2 = f(w)d(x — 24x)d (2)

p(w, @) = 0 for z€{0,X}, T = (z,2),
p(w,¥) = bounded & outgoing at z — +oo.

e Separation of variables ~ solution in terms of eigenfunctions*
¢j(x) = \/%sin (7}7(—37) for 5=1,2,... and eigenvalues

=P - @ =G s-F

*If ¢, = co(x) ~ slight complication that ¢; are frequency dependent.



Data model at receiver z, = (r,z4) in unpert. waveguide

f( ) M)
pw, @) = [ 3" ¢i(zx)dj(r)ePilD2a 4 S~ gz ) o (e 71()7]
j=1 J>N(w)

g

evanescent
with modal wavenumbers

’QTW\/l — () =1 Nw) = |2

Bi(w) = 1

\2;\/@?()2 —1, j> N(w).

Numerics* p(t,Zr) of—
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Time inms

*Setup: ¢, = 1.5km, pulse bandwidth 1.5 — 4.5kHz (A, = 0.5m). The waveg-
uide is 20\, deep and z4 = 494)..



Model in random waveguides

w2 52 w2
[Cg _l_ 89@2 _l_ sy(aj)gl p(wax) +

0%p(w, T)
0z2

= f(w)d(z — )8 (2)

e For each z we can expand p(w, ¥) in orthonormal basis {qu(a:)}

j=1
N(w) ' ' ~
plw, ) =Y ¢j(w)|aj(w, 2)ePil)? 4 bi(w, 2)ePil)Z] £ 37 ¢i(2) P (w, 2)
j=1 J>N(w)

e Here a;, b; and PJ‘? satisfy a coupled system* of stochastic
ODE’s driven by stationary random processes

X
C;1(2) =/O dz v(Z)d;(z) (), il=12 . 7= (z,2).

*Kohler, Papanicolaou-1977; Garnier, Papanicolaou - 2007



Model in random waveguide

. . 2 N . .
(33 =+ 532) (ajezﬁjz + bje_wjz> + ¢ (£> > Cl (alewlz =+ ble_zﬁlz>
€0’ =1
w2 ~
‘|‘5<—> ZC]’ZPZ&:O, 7=1,...N,
Co/ IsN
R 2 | N . . N
((93 — ﬁf) P;: —|— € (£> Z C]l (alezﬁlz —|— ble_zﬁlz) —|— Z lepls — O.
Co/ |i=1 >N

e Boundary cond: aj(w,z = 0) and ]3]¢(w,z — 0) given by source
excitation. As z — oo, the field is outgoing and Pf(w,z) — 0.

e To get well posed problem ask*: (8;a;)e"’i* + (8:b;)e i = 0.

e Eliminating the evanescent Pje(w,z) ~ closed first order system
for {a;j(w,2),bj(w,2)};=1. N() driven by random {Cj;(2)}.

*Kohler, Papanicolaou-1977; Garnier, Papanicolaou - 2007



Model in random waveguides

e [ he stochastic ODE system is studied with the asymptotic
(¢ — 0) limit tools of Khasminskii, Blakenship, Papanicolaou,
Stroock, VVaradhan.

o For ranges < O(e~2) the fluctuations are negigible.
o The fluctuations play a role at ranges ~ O(g~2)

o As ¢ — 0, negligible coupling between a;j and b; for smooth
z-autocorrelation of fluctuations ~~ forward scattering approx*.

~+ Closed first order system of stochastic ODE's for {aj}jzl,...N(w)

*Kohler, Papanicolaou-1977



The random transfer matrix (Green’s function) 7% (w, 2)

& f(w)

aj(w,z/e?) ~ Z T (w, z)ay(w, 0), aj(w,0) = ——=¢;(zx),

where

%Tg(w 2) = FP (wg%) +F (w€i2> 4 ] T¢(w,2), z>0,
T¢(w,0)

|
-

e Leading coupling: Pj(w,2) = % (%)2M6i[ﬁl(w)_ﬁj(w)]z

Bj(w)

e [ he second order coupling is via the evanescent modes

) 4 o0 / Chn
B, )= () ¥ [ds” (2)Cw =+ 9) i) (ets) i85 (@)@l

a\co) )" B(w)Bi(w)
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Data model in random waveguides*®

N (w)

dw f (w)
2w 2

p(t,r,zA = Z/52) ~
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Time in ms

Z Tj?l (w, Z) ey (x*)¢j (r)eiﬁj (w)zg—iwt
jil=1

e=0%
e=1%
e =3%

*Speed fluctuates about ¢, = 1.5km, with correlation length = A, = 0.5m.
Pulse bandwidth 1.5 — 4.5kHz. The waveguide is 20\, deep and z4 = 494 )..



Statistics of the array data

dw f(w) V)

p(brza=2/) 2 2 .;1 TS (w, Z)$i(ae);(r)e¥i)2Aa=it

- As ¢ — 0, T¢(w, z) converges in distribution* to a Markov dif-
fusion process with generator computed explicitly in terms of
correlation function of fluctuations.

e All statistical moments of T¢(w,z) can be computed approxi-
mately for e <« 1.

*Kohler, Papanicolaou - 1977.



Step 2: Analyze coherent part of array data E {p(¢,Zr)}.

This is what imaging methods rely on.
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T he coherent field

dw ]?(w) N(w) £ 18:(w)z g—iwt
Ep(trz0} [ 5507 30 B{Tj(w, 2) fi(w) é(r)e i)
J =1

where z 4 = Z/e2 and Iirrg)E{Tﬁ(w, Z)} = §;; e DiW)Z+i0;(w)Z,
E—

e D;(w) > 0 ( power spectral densities of fluctuations) is due
entirely to direct coupling of propagating modes.

° C’)j(w) is also caused by coupling via evanescent modes (they
carry negligible energy but cause dispersion).

e [ he coherent field decays exponentially with range.
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The mean intensity and frequency decorrelation

e TO compute intensity E{ 2 (t oz = Z/52>} we need second
moments E {Tsl(w Z)T l,(w Z)}

e We have frequency decorrelation for |w — '| > O(g?)
E{T5(w, T3, 2) | = E{T5(w, 2) } E{T5,(, 2)}

e For nearby frequencies ' = w — £2h,

dh
27

Y

{ 1w, Z) T3 (w — 2h,Z)}ei[6j(w)_ﬂj’(w_52h)]ZA—iht

¢ :
0510 WV; )(w,t, Z)+ (1 —46;4)0;6, exp. decay in Z.
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The loss of coherence

e The Wigner transform W](l)(w,t, Z) dominates at long ranges
and the intensity of the field recorded at & = (r,z4 = Z/e?) is

dw | F(w)]2 ™
2m 4

Z W<”< AL ACHEAC

=1

E{p2 (t,r, ZA)} S

e In spite of the ¢2 factor, E{p?} > |E{p}|? at long ranges,
because the latter decays exponentially.

The incoherent field p — E{p} becomes dominant at long ranges.

e =3%

il g &l
i i

140 160 180 200 220 240 260 280 300 320
Time inms
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Step 3: Analyze how typical imaging methods fail.
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Source localization using “time reversal”
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reverse .
f\

IR (&%) = /dw/ drp(w, &) Go(w, Zr; &%)

Green’s functlon

e We evaluate the imaging function at points % = (2%,2°%) in a
search domain and estimate £, as the peak of ZTR,

Expected to focus at Z, by time reversibility of the wave equation,
at least for large enough apertures and if G, is a good enough
approximation of the backpropagation in the real medium.
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Matched Field (MF) methods

2

MF (2% = /dw /Adrﬁ(w,fr)éo(w,fr;fs)

e This is the conventional (Bartlett) MF function. It is known
to be more robust than the previous method.

e VVariants of MF that use additional data filtering techniques are
widely used and have slightly better performance in practice.

- They deal well with additive noise, but rely on coherent data.

~> sooner or later they will fail similarly at long ranges.
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Illustration in media with negligible fluctuations

420 440 460 480 R 500 520 540 560 420 440 460 480 500 520 540 560
n n

ange in A, Range

e The imaging functions are computed at 70% aperture and
frequency band 2 + 0.375kHz. The source is in the center.

Next: Let us see what happens when the fluctuations play a role.
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Mean of ZTR(#%) focuses but method statistically unstable

E{ITR(Z)}| < CeP1lwe)Z,

S G SV VNV
0 @ 12 14 16 18 20
Crossrange in )\C

The relative standard deviation™ grows exponentially with range.

E{|TTR@)2) - |[E{TTR@)} o/ B
\/ { ; I—I}_R - * Z Er/W / €D1(WC)Z f(wQ Z’ x*)/
[EA{ZTR(Zx) H \/m algebraic inz

*The frequency band is |w — w.| < B.




Numerical results

Full aperture. Left: ¢ = 2%, bandwidth: 2 4+ 0.375kHz. Middle:
e = 2% and full bandwidth. Right: € = 3% and full bandwidth.

e Even though the statistical mean focuses in theory, we cannot
observe it due to the statistical instability.
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Matched Field

E{ZV" (#%)} = /dwE {|/A dr p(w, Zr) Go(w, Zr; a‘c’s)‘z}

e Using the data model and the second moment formula,

2 N(w)
I X G800 [ 4w 2)

=1

E {ﬁ(w, )P (w, f}

e It is difficult to estimate the source range z, = Z/e? from
/dtWy)(w,t, Z) ~ MF will not focus.
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The time integral of the mean Wigner transform

[aw® .1, 2) ~ _[f% {er@)2)

jl
e Here IN'(w) = negative semidefinite matrix

Fjj=—2_Tj Tu= </ /OOCOS [(ﬁj - 51) Z} E {C‘l(O)C'z(z)} dz
el g g 453‘5[ — 00 J J

e As Z grows columns of el (w2 _, span{(1,... 1)1} = null[l (w)]

{el_(w)Z} 1

—Z/Le . _ o :
i N @) <O (e ‘1), 1/Leq = 2-nd eigenval of T.




Step 4: Imaging at long ranges, where data is incoherent.
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Frequency correlation should be exploited for imaging

e Consider

dh _iht

F(w,t,r,r) = /Q—ﬁ(w,fr)ﬁ(w —e2h,%,1)e r.r € A.
0

e Due to frequency decorrelation it self-averages over bandwidth

)~ W o #3500 — 2 )\ o iht
/Iw—wc|§B dwF(w,t,r, ") ~ /dw/QWE {p(w,:cr)p(w e<h, . }e
QN(WC) 5 0
~ NP Y @R ()8 (Mo (WS (we, t, 2)
J,l=1

e Here we assumed a bandwidth O(e?) <« B < O(1).
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The Wigner transform

e We have Wg)(w,t, Z) = MW@(w,t, Z) wWwhere
J 63(‘*‘)) J

07+ 8@ W (w,6,2) =% Tju(w) (Wi (w1, 2) = WD (w,t,2)
n#j

for Z > 0 with initial condition

WD (w,t,Z = 0) = §(t)5,.

e The source range z4 = Z/€2 IS encoded in the t peak of
W](l)(w,t, Z), i.e. in the cross-correlations /dw]-"(w,t,r, ).

e We must estimate the transport speed. It differs from ﬁ}(w).
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Range estimation

e Given p(t,Zr) at the receivers, compute the cross-correlations

dh :
dwF (w,t,r, 7 =/ dw/—A w, Zr)p(w — e2h, 7.)e
foo € )= [ ien® [ 5T )

e Now project on the modes and backpropagate approximately

R = [ dro;(n) [ dr'o,(") | dw F(w,t = Bj(we)C, 7, 7)

w—we|<B

e Thispeaksat (=(; # 2!

e We estimate the range Z by comparing R((,7) with its theo-
retical model RM (¢, j; Z%), at source search range Z5.
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Range estimation

e Estimate Z by minimizing over Z°

R  RM( 4 29)
maxq R(¢,5)  maxey RM ({5, 2%)|

0z =Y /dg

JjES

e Computing RM (¢, j: Z%) requires correlation function of the
fluctuations. If we don't know it ~» estimate it using a model

- We have used E {v(Z)v(F)} = o°R (”7—?’)

- We found that the range estimation is surprisingly robust with
respect to the uncertainty in the above model.
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Explanation via numerical simulations

e = 3%, central frequency 2.09kHz and bandwidth 0.375kHz.
Top row: Left: R(¢, 7). Right: RM (¢, 5; 2%, 0%, 0%).

Bottom row: RM(¢,j; 73, 0%,¢%) for: Left: ZS;QZ* = —20)\..
Middle: ¢ = ¢*/2. Right: 0% = 1.340™.
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Estimation results. Full aperture, ¢ = 2%, central

frequency 2.69kHz and bandwidth 0.375kHz

MF

Crossrange in }.c

30
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10 450 500
Range in A\,

550
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c

Crossrange in A

440

460 480

0 ‘
10 450 500 550
Range in A,

500 520 540
Range in xc
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Estimation results. Full aperture, ¢ = 3%, central
frequency 2.09kHz and bandwidth 0.375kHz

14 ‘ 151 : 22

1 20f
1 18t
| 18t
1 14l
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560
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Estimation results. 40% aperture, ¢ = 2%, central
frequency 2.09kHz and bandwidth 0.375kHz

MF
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Cross range estimation

e \We compare
X(G) = [ S0P, 0P, 20, Py za) = [ dr i, 2005()

with its model

N (we)
Mg 25Y A 2 2 Bl(wc) () (we) Z*
G~ Il 3 M3 oG DGR

for a source at (z°, Z%).

e \We estimate the source cross-range by minimizing the misfit.

“ X (5) XM (5 2% |
O) _j%% <X()> <XM( z5)>|
where
<X S= =S x(G),  <aAMat) s= 13 aM(ie)
|8| ]GS |8| ]ES
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Explanation

0.4 T T T T T T

0.35

0.3

0.25

0.2

0.15

0.1

005 | | | | | |
0 5 10 15 20 25 30 35

Mode number

XM(j: 25) for 5 = BAe and 10X, for e = 2%, w/(27) = 2.69kHz
and 0.375kHz bandwidth.
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Explanation

0.4 T T T T T T T T 0.4

—o—{=2.09 KHz

—+—{=2.69 KHz

———{=3.13KHz

031

4 0.25f

0.2

-4 0.15f

0.1

| | | | | | | | | | | | | |
5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35
Mode number Mode number

XM (j5: 2%) for %5 = 5\ and full aperture.

Left: ¢ = 2%, for we/(27) = 2.09kHz, 2.69kHz and 3.13kHz,
respectively.

Right: w./(27) = 2.69kHz and € = 2% and 3%. The bandwidth
is 0.375kHz. At 3% there is no cross-range information.
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Numerical cross-range estimation at full aperture
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Full aperture cross-range estimation results at ¢ = 2%, and

bandwidth 0.375kHz. Left: central frequency 2.69kHz, middle:
2.99kHz and right: 3.1.3kHz
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Partial aperture effects

0.4

S
o X :5)»c
0.35

x*=10A
[

T

1 1 1 1 1 1
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Mode number Mode number

XM(j: 25) for 5 = BAe and 10X, for e = 2%, w/(27) = 2.69kHz
and 0.375kHz bandwidth. Top: full aperture A = [0,20)\.].
Bottom: A4 =[0,12).] and A = [0,4)\/].
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Cross-range estimation results. Partial aperture
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e = 2%, we/(2w) = 2.69kHz and bandwidth 0.375KHz.
From left: full aperture A = [0,20);], A = [0,12)¢], A =
[0,8)¢], A = [0,4)].
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