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@ Part I. Non-Perturbative Methods in Two
Dimensional Field Theory:

@ 1. From massless free scalar field to conformal field
theories

@ 2. Conformal field theory

@ 3. Theories invariant under affine current algebras
@ 4. Wess-Zumino-Witten model and Coset models
@ 5. Solitons and two dimensional integrable models
@ 6. Bosonization;

@ 7. The large N limit of two dimensional models;
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@ Part II. Two Dimensional Non-Perturbative Gauge
Dynamics:

@ 8. Gauge theories in two dimensions - basics;
@ 9. Bosonized gauge theories;

@ 10. The t'Hooft solution of 2d QCD;

@ 11. Mesonic spectrum from current algebra;

@ 12. DLCQ and the spectra of QCD with fundamental
and adjoint fermions;

@ 13. The baryonic spectrum of multiflavour QCDz2 in the
strong coupling limit;

@ 14. Confinement versus screening;

@ 15. QCD2, Coset models and BRST quantization;

@ 16. Generalized Yang Mills theory on Riemann surface;
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@ Part III. From Two to Four Dimensions:

@ 17. Conformal invariance in four dimensional field
theories and in QCD;

@18. Integrability in four dimensional gauge
dynamics;

@19. Large N methods in QCD4;
@ 20. From 2d bosonized baryons to 4d skyrmions;

@ 21. From two dimensional solitons to four
dimensional magnetic monopoles;

@ 22. Instantons of QCD;
@ 23. Summary, conclusions and outlook;



Two versus four dimensional field theories
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@ In two dimensions the underlying manifold is simpler.

@ The number of degrees of freedom of each field is
smaller.

@ Certain symmetries associate with infinite dim algebras

@ In one space dimension there is no rotation symmetry
and no angular momentum.

@ The light cone is disconnected and is composed of left
moving and right moving branches. Therefore, massless
particles are either on one branch or the other.

@ On trivial topology pure gauge theory is empty.

@ Also, the ultra-violet behavior is more convergent in two
dimensions, making for instance QCD2 a super-
convergent theory.
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@ Conformal symmetry

@ Integrability

@ Bosonization

@ Weak strong duality

@ Topological field configurations

@ Confinement versus screening

@ Hadronic spectra: mesons, baryons.

@ Future outlook



e ——

"

Conformal invariance

* The conformal algebrais ® The conformal algebra is

the infinite dimensional the finite dimensional
Virasoro algebra SO(4,2)
* The collinear algebra is
SL(2,R)
» The conformal * The conformal
transformations are transformations are
holomorphic and anti- global

holomorphic



Collinear algebra
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@ Use light-cone coordinates
A =A_nll + At + A

@ The transformation or x_

, X

T — ar_ ..-r.'_ —>".-r.'_l+-a_4 Lo — T_ = 1+ 2ar_
@ The generators are
Ly=—-iPy L_= %K_ Lo = %(D +M_y)
@ SL(2,R) algebra (Lo, L] =+L. [L_.Ly]=—2L

@Forafield ®(r) thatdepends  ®(a) = ®(an’)

@ The collinear algebra

ool =B B(a) s (eat )

new L A

ac + b)
cov + d
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“Primary field, highest weight
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Virasoro in 2 dimensions SL(2,R) Collinear 4 dimensions

Lo[¢(0)]0 >] = A{|¢(0)]0 >] Lo|®(0)|0 >] = j{|2(0)[0 >]

L,[6(0)]0 =] =0, n >0 L_[®(0)]0 >] =0,



Conformal Operator Product Expansion

@ 2d COPE

Oi(z.2)0;(w, @) ~ > Cijp(z — w ) hih (7 - -EB)E"‘“_E"_'&? Dy (w, w)

k
@ 4d collinear COPE
o0 1 1/2(?:A+t3—tn) ITI-‘|‘51‘|‘32_3A_SB
A(z)B(0) = @ (—) : — ; ;
(@) B(0) T;] - B(ja—jB + jn,JB — ja+ Jjn)

X /1 d'u_,-u_,(jA—jB+jn—1) (1 — 'U-)(jB _jA—Hn_l)OhJE (’U.’I_)
0 :



Conformal invariance
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@ As an example let's compare the OPE of two currents.
The expression in 2d reads

koo ST (w)
" G-wE T

J () (w)

+ finite terms

for any non-abelian group, and in particular for the
abelian case the second term on the RHS is missing.

r\‘p 'I-]—‘\n f\]nn“'ﬂf\‘l‘\"\‘\ﬂﬂ Nnt1 N11vrantco ""‘\]7(\(" 'l-]—‘\n pr\ﬂm
Ul L11IT ClCLLlUlllCléllCLl\_ CULITIILD LANUCD L11IC 1uU1l11l1l
JH () JH(0) ~
G—ty) /2 i
oo o 1 \(6=tn n+1_ T(27n) 1 in—1m1.1
Zn: ('” (F) ii—) INESINETY. fl] d“‘[“‘(l o H\J] Qﬂ {“T—



, g [T dtAL(t)
Qular, az) = v(ay )y, P e’ f‘” o )"fﬁ«’(ﬁz)

@ and the corresponding local operators read

Qr'(a) = (i00)" [P(a)yC? (D /dy ) v(a)|.

@ with

B+:ﬁ+—b+ d+:ﬁ++b+

@ and where C_3/2 are the Gegenbaur polynomials.



Conformal invariance
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@ The conformal Ward identity associated with the
dilatation operator in 4d

N
Y (ly+(9") + 2:0) <To(y)..0(xy) >=0

1

where 1, is the canonical dimension and y(g*) is the
anomalous dimension,

@ This seems quite similar to the one in 2d

> (20 + hy) < 0]o (21, 21)...0n (2, 2,)|0 >= 0

2



Conformal invariance
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@ In both cases one has to determine the full quantum
conformal dimension of the various operators.

@ However, in certain CFT models, like the unitary
minimal models, there are powerful tools based on
unitarity which enable us to determine exactly the
dimensions h. of all the primary operators and
hence all the operators of the model.

@ On the other hand, it is a non-trivial task to
determine the anomalous dimensions in other
models in 2d, and of course in 4d.

@ In certain supersymmetric theories there are
operators whose dimension is protected



Conformal invariance
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@ Using the Ward identity one can extract the form of
the two point function of operators of spin s in 4d .
It is given by

lo+v(9*) 7/ | p
< o(x1)o(x2) >= No(g*)(u*) 21" [ 1 )2] ((lu — rz)+)

(;171 — XI9 (Il — ;I?g)_

@ The corresponding two point function in 2d, which
depends only on the conformal dimension of the
operator h, reads

C9
(21 . 22)211.1(51 _ 22)2?1.1

G’g(zl, Z1. 29, Zg) =< 0|(;")1(Z1, 51)@1(22, 52)'0 >=



Conformal invariance
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@ As for higher point functions, one can use in 2d the
local Ward identities together with Virasoro null
vectors to write down partial differential equations
that determine the correlators. For instance , the
four point function of the Ising model.

@ Certain 2d conformal field theories are further
invariant under affine Lie algebra transformations.
Using combined null vectors one derives the so
called Knizhnik-Zamolodchikov equations, which

can be used to solve for instance the four-point
function of the SU(N) WZW model .

@ This type of differential equations that fully
determine correlation functions are obviously
absent in 4d interacting conformal field theories.



Integrability
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@ Systems with a finite number of degrees of freedom, like
spin chain models are integrable if there isan equal
number of conserved charges.

@ Integrable field theories admit an infinite countable
number of conserved charges.

@ The scattering processes of those models always involve
a conservation of the number of “particles”.

@ In two dimensions there are continuous integrable
models like the sine-Gordon model as well as discretized
ones like the XXX spin chain model.

@ In two dimensions the spin chain models follow from a
discretization of the space coordinate, by placing a spin
variable on each site that can take several values, and
by imposing periodicity:.



Integrability
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@ The integrable sectors of 4d gauge dynamical
systems are based on identifying an exact map
between certain properties of the systemsand a
spin chain structure.

@ In the four dimensional N =4 super YM theory the
spin chain corresponds to a trace of field operators

@In high-energy scattering of QCD itisa ' chain”
of reggeized gluons exchanged in the t-channel of a
scattering process.

@ A summary of the comparison among the basic two
dimensional spin chain, the ' *spin chains”
associated with the planar N=4 SYM, and the high
energy scattering in QCD, is given in table



Spin chain

Planar

N =4 SYM

High energy
scattering m QCD

Cyclic Simgle trace Reggeized guons
spin chain operator 1n t-channel
Spin Field operator SL(2) spin
at a site

Number of

Number of

Number of

sites operators gluons
Hamiltonian Anomalous dilatation Hprir
operator
Energy Anomalous dimension ~ %EE‘;S;:
elgenvalue g~ 26D
evolution dilatation the total rapidity
time variable logs

Zero momentum U =1

Cyclicity constraint
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Fig. 18.1. A single trace operator as a spin chain.



Topological field configurations

@ Topological charges in any dimensions are
conserved regardless of the equations of motion of
the corresponding systems.

@ In two dimensions it is very easy to write down a
topological current

JPL — EPLL;()HO J# — Eﬂ_pg_lapg
@ The corresponding topological charge ( abelian)

Crop = / dr¢' = [p(t, 400) — ¢(t, —00)] = &y —

@ For the compact S this is the winding number



Topological field configurations
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'@ Obviously one cannot have such topologically conserved
currents and charges in 4d.

@ However, for theories that are invariant under a non-abelian
group, one can construct also in four dimensions a
topological current and charge, like for the cases of
Skyrmions, magnetic monopoles and instantons. For the
Skyrmions the topological current is given by

J v pPo

Tiare = g Tl Lol

where L,=U'0,U with U € SU(Ny)



Topological field configurations
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@ The topological charges, for compact spaces, are the
winding numbers of the corresponding topological
configurations. For a compact one space dimension,
we have the map of S' — S' related to the
homotopy group 7 (S!).

@ In two space dimensions, the windings are

: : G/H
associated with the map So — 59 as for the
magnetic monopoles.

@ For three space dimensions, itis S — S® for the
Skyrmions at N=2, and the non-abelian instantons
for the gauge group SU(2) . The topological data of
the various models is summarized in the table .



Topological field contigurations

Table 2: Topological classical field configurations i two and four dimensions

classical | dim. map topological
field current
soliton two e o,
baryvon | two St 6t e Trlg™0,q]; g € U(Ny)
Skyrmion | four 5% — 53 e 1Tr[L,L,L,
monopole | four bfmw — 52, JH Si(—' H,,,M{—'“b“f)” PP Pb e e
mstanton | four bSS - Sg ﬂ;T [4,()PA 4 2 4,,,;1 A ]




Bosonization
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Bosonization is the formulation of fermionic systems in
terms of bosonic variables. ( No spin in 2d)

It has several advantages:

@ [t is usually easier to deal with commuting fields rather
than anti-commuting ones.

@ In certain examples, like the Thirring model, the fermionic
strong coupling regime turns into the weak coupling one in
its bosonic version, the Sine-Gordon model.

@ One loop fermionic computations involving the currents
turn into tree level consideration in the bosonized version.
The best known example of the latter are the chiral or axial
anomalies.



operator fcrmiouic bosonic

Sy () a,' W Db

.}_(:I:_:] LRL R O_o

Tiy(at) | =5 [0 00 — Uy LL] : —5 0,00 0(at)

T _(x7) % (1) RTdt R — R 1;:3] : —% L O_pd_o(xT):
x

fermiony; | ¢ (™) 5= texp ( i/ f dém(&) + O(r])) :

_ I . "

fermionp p(r™) %‘ii_ exp | —i/7 f dém(&) —qb(;rj)
— i

mass term f;-'f-'E(;r.'Jr)"L'R( )+ R( (™) | o coso(xt,x™)




Bosonization

operator

fermionic

bosonic

J(2)

J(2)

I'(z) —5 [VT00 — 0] 1 | —5 1 060¢(2)
T(%) — = [T O — O T —% : 0000 (Z)
fermiony;, | ¥(2) . 190(2)
fermiong | ¥(2) . o19(2)

mass term




Bozonization
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@The non-abelian bosonization, especially
in the product scheme, offers a separation
between colored and flavored degrees of
freedom, which is very convenient for
analyzing the low lying spectrum.

@Baryons composed of N - quarksarea
many-body problem in the fermion
language, while simple solitons in the
boson language.



Bozonization
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@ In four dimensions, spin is obviously non-trivial and one
cannot constitute generically a bosonization
equivalence. However, in certain circumstances a
systems can be described approximately by fields that
depend only on the time and the radial direetion.

@ Examples are monopole induced proton decay, and
fractional charges induced on monopoles by light
fermions. In these cases the relevant degrees of freedom
are in an s-wave .

@ There is a slight difference with two dimensions, as the
radial coordinate goes from zero to infinity, so "half" a
line. Appropriate boundary conditions enable us to use a
reflection, so to extend to a full line.



Strong —weak duality
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@ A very important phenomenon that occurs in both
two and four dimensions is the strong-weak duality,
and the duality between a soliton and an elementary

field.

@ In two dimensions it is the relation between the
Thirring model and the sine-Gordon model.
e
ViV 1+ g

T

@ This also relates the elementary fermion field of the
Thirring model with the soliton of the sine-Gordon
model. In particular for g=o corresponding to 3?=4n
the Thirring model describes a free Dirac fermion,
while the soliton of the corresponding sine-Gordon
theory is the same fermion in its bosonization
disguise.




Strong- weak duality
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@ An analog in four dimensions is the Olive-Montonen
duality , which relates

electric charge e « - magnetic charge e_=4m/e
elementary states <« magnetic monopoles

+ On top of the self-duality of the spectrum, there is a
similar duality also in the low energy scattering.

* There is no net force between (BPS) magnetic monopoles
This follows up from an exact cancelation between the
magnetic repulsion and the attraction due to an exchange
of a Higgs scalar.

The N= 4 SYM admits a complete invariance under the
Olive Montonen duality



Confinement versus screening
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@ In 2d the string tension is proportional to
Ts~ my g

@ This implies that massless dynamical quarks
always screen. In particular that massless
dynamical adjoint fermions can screen
fundamental fermions.

@ This follows from the computation of
1 =<H>- <H >

@ With this definition of the string tension, the
screening behavior in 2d and in 4d are very

diffferent.



Determination of the string tension

@ The bosonized action of massive QCD2 with

fermions in the fundamental representation
1

m

f d*x t-r[il*ﬂyi?“gT') (14.42)
2

Sf undamental —

_ / By tr(410,9)(570:9) (g Org)
127 JB '

! | 1
—l—amﬁifu.nd / dg;i!.' t-r'(.g + QT) _ /{:IQJ:EFSHFGHH
1 ¢ ] | I N
2 / A tr(igt 0y gA_+igd g’ Ay + AygA g" — AL A )
exp(y)

where g is NxN unitary matrixand = .3

_|_

@ In the gauge A_=o the action reads

S =5y + %THJ{LR / d?a tr(g + :;’TI)

ik - i



Determination of the string tension

@ An external source is addes as

. i___l;_eﬂ
4

/ d*x (ud_ul)*A%

u = [exp —idm (B(x~ + L) — 8(x— — L))]T2,,.

where

@ The combined action reads

,S! f— ,S‘U —|— E'T”.J{I.R/fgzﬂf{ ff'(y —|_ .'UT]+

20 (_g) + gy (32~ + L) = 8™ — L) s



Determination of the string tension

R (41 b (5 + 1) = e — 1)

@ This is solved by

. . Fort -, _ o ‘
g'" = Pexp {/d:}:_ (gc‘}_;ﬂ + -1'.4?1'PII ot (0™ + L) —0(x — L)JT%H) }
"dyn

. k — —
idm ezt @(p— 4+ L)T3 . —idg Fext O(x——L)T3 "
— e Ldyﬂ dyn _JT L'—’Eyﬂ dy ( 1—]:.—]:?)

@ The resulting action

~ 1k gy, e tea
S = ST-'VZI'V (U) + Sﬁcineﬁ-c(AH) - _ljirn ‘/{52;!? (g(j_gT )“Aj_

kert 3 — gl Sext kext 3

1 i y
+§'f?3-ﬁLR/(£2;If fi’(}f ! ?rkdyn dyn + e A‘dyn dyn G’T)



Determination of the string tension

@ The expectation value of the Hamiltonian is

< H >=

]- ridar kert T3 — il kext T3
__T”JH.R h(f’ kdyﬂ dyn —|— “ kdyﬂ -:‘Eytr?,) —

.-Iff i .
— LR Z cos(4mA; kim )
- dyn

@ The string tension thus is given by

Eort
O = MR Z (1 — C‘.Uh[i’lﬂ'}\i ot ])

kdyn ;
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@ The Wilson line that associates with the potential of
a quark anti-quark pair in an N_ anality=k is the k-
string. Various methods including large Nc, lattice
and holography were used to determine it.

@ The string tension of such a configuration is believed
to follow either a Casimir or sinusoidal rules

A(:\T o A) sin Tk

< o'’ ~ sin( -\-*)

LN Ly

Cas

(]-;,l ~

@ The 2d analog of the 4d YM ( or N=1 SYM) is QCD
with adjoint fermions. The 2d k-string tension is

o o, Tk
o~ sin?( ”\)

ke




Hadronic spectra
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@In 2d the mesonic spectrum of QCD can be worked out
in:

@ 't Hooft seminal large N_ limit in the fermionic picture.
@ The currentization method for massless quarks.

@ The DLCQ approach for fundamental and adjoint
fermions.

@ The 2d baryonic spectrum can be extracted using
bosonization and the strong coupling limit.

@ In 4d one can use lattice simulations and approximate
methods like

@ Large N_
@ Skyrme model for the baryons ...



Mesons
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@ The spectrum of mesons is 2d is characterized by
(g) Nc ) Nf ) m n)

@ The highly excited states behave like
"‘Mzmes skt ( g° Nc ) n

@ This is the Regge behavior which mesons in nature admit.
It is easily derived from the quantization of a string model
but it is hardly ever the result of 4d field theory.

@ The opposite limit of the ground state and low lying states

mes

@ In the limit m <<g (M°)? .~ (g2 N)"*(m, + m,)

@ In the limit m;, >>g M° ~(m, +m,)



Mesons
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@ For massless quarks this implies a massless Meson

@ This is similar to the GOR relation for the pion mass

s  <YY >
T 9

2
@ We cannot deduce form ‘t Hooft model the

dependence on N, . This can be done using the
currentization method. We get

m (mq + M)

M2~ N;

mes



Mesons
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@ Whereas the ‘t Hooft model presents a solution of
the mesonic spectra in 2d, in 4d one does not know
the corresponding mesonic spaectra in the planar
limit. One can only determine the scaling with N_
of the mass, the size, scattering amplitudes etc.



Baryons

@ In 2d the spectrum of the baryonscan be m, | 0
determined in the strong coupling limit €c |
using bosonization.

@ After integrating the colored d.o.f one finds an
exact expression for the action of the flavored d.o.f.

@ The mass of the baryon takes the form

| |
19N |y (Ne — 1)
FE — | i LIV
E=4my/ — +mv 2/ (—) [7 — N-- :
V VNG |72 ¢ ang
A €V IVF A lﬁ A~ = NZ -1
where ™= [Noom(— =) O = NolNetNg)

In 2d for N =3 the lowest state is the totally
symmetric 10 and not the 8



Large N scaling and flavor content
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@ The scaling with N in 2d and 4d are different

two dimensions

four dimensions

Classical baryon mass

Ne

Ne

Quantum correction

A0
_L\ C

A —1
_L\Gf

@ Both in 2d and 4d the mass depends on N, via the

second Casimir operator.

@ The flavor content of the baryons in 2d and 4d is

two dimensions four dimensions
state value state value
() A* 2 P :
(Jd) A+ 1 p i
(5s) AY 6 p 2
(5s) ATT % A %




Summary
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@ In general the non-perturbative techniques are
more powerful in 2d than in 4d.

@ There are certain similarities between the
application of CFT in 2d and 4d.

@ Integrability in 4d is based on mapping sectors of
4d CFT to 2d integrable models.

@ There are methods that apply only in 2d like
bosonization.

@ Strong-weak and particle-soliton dualities occour in

both 2d and 4d.

@ Screening versus confinement seems to be different
in 2d and 4d



