QUESTIONS FROM THE PROBLEM SESSION LMS-EPSRC DURHAM SYMPOSIUM 'GEOMETRY AND ARITHMETIC OF LATTICES' JULY 2011

NOTES BY S. A. THOMSON AND J. THOMPSON

1. $SL(3,\mathbb{Z})$ (MISHA KAPOVICH)

Question 1.1. Let $\Gamma = SL(3, \mathbb{Z})$. What are the torsion-free finitely generated subgroups of Γ ?

We know that there exist:

- (1) plenty of free subgroups (Tits);
- (2) plenty of $\mathbb{Z} \times \mathbb{Z}$ (diagonalisable, upper triangular);
- (3) plenty of solvable subgroups;
- (4) semidirect products of free groups and \mathbb{Z}^2 ;
- (5) surface subgroups;
- (6) finite-index subgroups.

Are there other subgroups, e.g., $\mathbb{Z}^2 * \mathbb{Z}$?

Question 1.2. Does there exist an embedding $\mathbb{Z}^2 * \mathbb{Z} \hookrightarrow SL(3, \mathbb{Z})$?

Question 1.3 (Serre). Is every finitely generated subgroup $\Gamma < SL(3,\mathbb{Z})$ finitely presented; i.e., is $SL(3,\mathbb{Z})$ coherent? What about the property FP_{∞} ?

Question 1.4 (Alan Reid). Is there a finite volume hyperbolic 3-manifold with a faithful representation into $SL(3,\mathbb{Z})$? (I.e., does there exist a lattice $\Gamma < SO(3,1)$ with an embedding $\Gamma \hookrightarrow SL(3,\mathbb{Z})$?

We can ask similar questions for $\Gamma = \text{SL}(2, \mathbb{Z}[\sqrt{2}])$ and other Hilbert modular groups: again there does not exist a subgroup $F_2 \times F_2 \hookrightarrow \Gamma$ and we know very few examples of finitely generated subgroups. As above, we can ask for example:

Question 1.5. Is every finitely generated subgroup $\Gamma < SL(2, \mathbb{Z}[1/p])$ finitely presented? [*Et cetera.*]

Remark. Serre asked many of these questions at the 1977 Durham Symposium.

2. Volumes of lattices for real rank at least 2 (Misha Belolipetsky)

Question 2.1 (Nori, cf. [CV]). Let $\Gamma < G$ be a Zariski dense discrete subgroup of G, where G is a simple real Lie group, and suppose that H < G is semisimple. Let $\Delta = \Gamma \cap H$ and suppose Δ is an irreducible lattice. Is Γ a lattice in G?

Date: July 2011.

This question was discussed in the talk by Venkataramana.

Question 2.2. If the answer to Question 2.1 is yes, can we then estimate (from below) $vol(\Gamma \setminus G)$ in terms of $vol(\Delta \setminus H)$? (Here assume the Borel-Prasad normalisation of the Haar measures on G and H.)

For example, we can ask this question for the groups considered by Chatterji and Venkataramana in [CV]. If there is a good estimate, then it would have interesting implications for counting non-uniform lattices in $SL_n(\mathbb{R})$.

3. Lattices in PU(n, 1), for $n \ge 2$ (Misha Kapovich)

Question 3.1. Is there a (uniform) lattice in PU(n, 1), for $n \ge 2$, that embeds in a Coxeter group?

Nilpotent subgroups of Coxeter groups are virtually abelian so Γ must be uniform. By Bergeron-Haglund-Wise [BHW] there exist lots of examples of $\Gamma < SO(n, 1)$ $(n \ge 3)$, arithmetic and nonarithmetic, such that Γ embeds in a right-angled Coxeter group. If G has property (T) then lattices $\Gamma < G$ cannot embed in any Coxeter group.

The receiving Coxeter group must have much larger cohomological dimension than Γ .

4. GROMOV-PIATETSKI-SHAPIRO LATTICES (M. S. RAGHUNATHAN)

In the Gromov-Piatetski-Shapiro construction [GPS] we get a lattice $\Delta < SO(n - 1, 1)$ corresponding to the common hypersurface in two manifolds which correspond to $\Gamma_1, \Gamma_2 < SO(n, 1)$. Additionally we have an arithmetic lattice Φ in SU(n - 1, 1) arising from treating the form

$$\sum_{i=1}^{n-1} x_i^2 - x_n^2$$

as a Hermitian form over an imaginary quadratic extension. ("So Φ is the complexification of Δ .") We can also look at the non-arithmetic group $\Gamma < SO(n, 1)$ coming from the Gromov-Piatetski-Shapiro construction as a subgroup of SU(n, 1).

Question 4.1. Is $\langle \Gamma, \Phi \rangle$ discrete in SU(n, 1)? Does it have finite covolume?

5. POLYSURFACE GROUPS (FRANK JOHNSON)

Let

$$\Gamma = \Gamma_0 > \Gamma_1 > \dots > \Gamma_n = \{1\}$$

where Γ_i/Γ_{i+1} are surface groups of genus at least 2. We can realise this topologically so that Γ is a PD(\mathbb{Z}) of dimension 2n.

Question 5.1.

- (1) Can we realise $\Gamma = \pi_1$ (closed aspherical topological manifold)?
- (2) If so, can we then smooth this manifold?

Note that by passing to a finite index $\Lambda <_{\text{f.i.}} \Gamma$ we can realise this and smooth the manifold [J].

6. Preservation of lattice properties under weak commensurability (Andrei Rapinchuk)

Let G_1 and G_2 be two semisimple groups and let Γ_1 and Γ_2 be weakly commensurable Zariski dense subgroups of G_1 and G_2 respectively.

Question 6.1. If Γ_1 is discrete, is Γ_2 ?

The answer to this is "yes" in the *p*-adic case. It is also known in the real case when the \mathbb{R} -rank of G_1 is equal to the \mathbb{R} -rank of K, where K is the maximal compact subgroup of G_1 . Otherwise this is unknown.

Question 6.2. If both Γ_1 and Γ_2 are lattices, and Γ_1 is cocompact, is Γ_2 cocompact?

The answer to this is "yes" in the arithmetic case.

7. Holomorphic fibrations (Misha Kapovich)

A singular holomorphic fibration is a holomorphic map $f: X_1 \to X_2$ that is surjective and has connected fibres.

Question 7.1. Does there exist torsion free lattices $\Gamma < PU(n,1)$ (for large enough n) such that $\Gamma \setminus \mathbb{CH}^n$ admits a non-trivial structure of a holomorphic fibration over a compact \mathbb{C} -curve of genus at least 2?

- (1) There exist examples in lower dimensions (Deligne-Mostow).
- (2) If there exists $\Gamma_0 < \Gamma$ (finite index) with a homomorphism $\varphi \colon \Gamma_0 \to F_2$ then we have such a fibration.

Kapovich: "We don't have much of a picture other than Betti numbers for complex hyperbolic manifolds."

(3) There exist Γ with infinite virtual first Betti number; i.e.,

$$\sup_{\Gamma_i <_{\mathrm{f.i.}}\Gamma} \dim H_1(\Gamma_i; \mathbb{C}) = \infty.$$

- (4) It is still unknown whether there exists a finitely presented group G with infinite virtual first Betti number but for which there is no $G_0 <_{\text{f.i.}} G$ such that G_0 surjects onto F_2 .
- (5) Cf. virtual fibering for $\Gamma < SO(3, 1)$.

8. BOUNDED GENERATION (ANDREI RAPINCHUK)

A group has bounded generation if it can be written as a finite product of cyclic subgroups

Question 8.1.

- (1) Do all higher rank arithmetic lattices have the bounded generation property?
- (2) Construct one anisotropic example: uniform lattices in $SL_n(\mathbb{R})$?

9. Affine Crystallographic groups (Misha Belolipetsky)

Let $\Gamma < \operatorname{Aff}(\mathbb{R}^n)$ be an affine crystallographic group. Following Gromov we can define the conformal volume of $\mathcal{O} = \mathbb{R}^n / \Gamma$ by

$$\operatorname{convol}(\mathcal{O}) = \inf_{\phi: |\mathcal{O}| \to \mathbb{R}^N} \sup_{x \in \mathbb{R}^N, r > 0} r^{-n} \operatorname{vol}_n(\phi(\mathcal{O}) \cap B(x, r)),$$

where ϕ ranges through all possible embeddings of the underlying space $|\mathcal{O}|$ of the orbifold \mathcal{O} into \mathbb{R}^N , for sufficiently large N. Another version of the conformal volume, which is closely related to the Li-Yau conformal invariant, can be found in [ABSW]. These definitions are not equivalent but at the same time are closely related to each other (how?).

Question 9.1. What is the conformal volume of \mathbb{R}^n/Γ ?

If there exist Λ with $\Gamma \leq_{\text{f.i.}} \Lambda < \text{Aff}(\mathbb{R}^n)$, where Λ is generated by reflections, then it would allow to obtain a good estimate for the conformal volume. This works well for n = 2 but would fail in high dimensions. As a variant of the previous question we can ask:

Question 9.2. What is the conformal volume of \mathbb{R}^{24}/Λ , where Λ is the Leech lattice?

References

- [ABSW] I. Agol, M. Belolipetsky, P. Storm, and K. Whyte, Finiteness of arithmetic hyperbolic reflection groups, Groups Geom. Dyn. 2 (2008), 481–498.
- [BHW] N. Bergeron, F. Haglund and D. Wise, Hyperplane sections in arithmetic hyperbolic manifolds, J. Lond. Math. Soc., 2011, doi: 10.1112/jlms/jdq082
- [CV] I. Chatterji And T. N. Venkataramana, Discrete linear groups containing arithmetic groups, arXiv:0905.1813v1 [math.GR].
- [GPS] M. Gromov and I. Piatetski-Shapiro, Nonarithmetic groups in Lobachevsky spaces, Inst. Hautes Études Sci. Publ. Math. 66 (1988), 93–103.
- [J] F. E. A. Johnson, On the realisability of polysurface groups, J. Pure Appl. Algebra 15 (1979), 235–241.