
Birational geometry and arithmetic

July 2012



Basic questions

Let F be a field and X a smooth projective algebraic variety over F .

We are interested in rational points X (F ). Specifically,

Existence

Density

Distribution with respect to heights

Of particular interest are small fields:

F = Fq, Q, Fq(t), C(t), ...

Main idea

Arithmetic properties are governed by global geometric invariants and
the properties of the ground field F .
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Classification schemes

via dimension: curves, surfaces, ...

via degree: Fano, general type, intermediate type
Xd ⊂ Pn, with d < n + 1, d > n + 1 or d = n + 1

how close to Pn: rational, unirational, rationally connected
In small dimensions some of these notions coincide, e.g., in
dimension 2 and over algebraically closed fields of characteristic
zero

rational = unirational = rationally connected

Small degree surfaces (Del Pezzo surfaces) over algebraically
closed fields are rational. Cubic surfaces with a rational point are
unirational. A Del Pezzo surface of degree d = 1 always has a
point. Is it unirational?
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Basic invariants

Picard group Pic(X ), canonical class KX , cones of ample and
effective divisors

Fibration structures: Conic bundles, elliptic fibrations, ...

Over nonclosed fields F :

Forms and Galois cohomology

Brauer group Br(X )

In some cases, these are effectively computable.
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Starting point: Curves over number fields

What do we know about curves over number fields?

g = 0: one can decide when X (F ) 6= ∅ (local-global principle), if
X (F ) 6= ∅, then X (F ) is infinite and one has a good
understanding of how X (F ) is distributed

g = 1: either X (F ) = ∅, or X (F ) is finite, or infinite; no effective
algorithms to decide, or to describe X (F ) (at present)

g ≥ 2: #X (F ) <∞, no effective algorithm to determine X (F )
(effective Mordell?)
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Curve covers (joint with F. Bogomolov)

We say that C ⇒ C ′ if there exist an étale cover C̃ → C and a
surjection C̃ → C ′.

Theorem (2001)

Let C be a hyperelliptic curve over F̄p of genus ≥ 2 and let C ′ be
any curve. Then C ⇒ C ′.

Let C be a hyperelliptic curve over Q̄ of genus ≥ 2 and C6 the
curve y2 = x6 − 1. Then C ⇒ C6.

The cover C̃ → C is explicit, so that effective Mordell for C6 implies
effective Mordell for all hyperbolic hyperelliptic curves.

Conjecture

If C ,C ′ are curves of genus ≥ 2 over F̄p or Q̄ then C ⇔ C ′.
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Prototype: hypersurfaces Xf ⊂ Pn over Q

Birch 1961

If n� 2deg(f ) and Xf is smooth then:

if there are solutions in Qp and in R then there are solutions in Q
asymptotic formulas

a positive proportion of hypersurfaces over Q have no local
obstructions (Poonen-Voloch + Katz, 2003)

the method works over Fq[t] as well

Introduction: rational points on hypersurfaces
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Heuristic

Given: f ∈ Z[x0, . . . , xn] homogeneous of degree deg(f ).

We have |f (x)| = O(Bdeg(f )), for ‖x‖ := maxj(|xj |) ≤ B.

May (?) assume that the probability of f (x) = 0 is B−deg(f ).

There are Bn+1 “events” with ‖x‖ ≤ B.

We expect Bn+1−d solutions with ‖x‖ ≤ B.

Hope: reasonable at least when n + 1− d ≥ 0.

Introduction: rational points on hypersurfaces



Xf ⊂ Pn over C(t)

Theorem

If deg(f ) ≤ n then Xf (C(t)) 6= ∅.

Proof: Insert xj = xj(t) ∈ C[t], of degree e, into

f =
∑
J

fJx
J = 0, |J| = deg(f ).

This gives a system of e · deg(f ) + const equations in (e + 1)(n + 1)
variables. This system is solvable for e � 0, provided deg(f ) ≤ n.

Introduction: rational points on hypersurfaces



Existence of rational points

Theorem (Esnault 2001)

Every smooth rationally connected variety over a finite field has a
rational point.

Theorem (Graber-Harris-Starr 2001)

Every smooth rationally connected variety over the function field of a
curve over an algebraically closed field has a rational point.

Over number fields and higher dimensional function fields, there exist
local and global obstructions to the existence of rational points.
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Hasse principle

HP

X (Fv ) 6= ∅ ∀v ⇒ X (F ) 6= ∅

Basic examples: Quadrics, hypersurfaces of small degree

Counterexamples:

Iskovskikh 1971: The conic bundle X → P1 given by

x2 + y2 = f (t), f (t) = (t2 − 2)(3− t2).

Cassels, Guy 1966: The cubic surface

5x3 + 9y3 + 10z3 + 12t3 = 0.

The proofs use basic algebraic number theory: quadratic and cubic
reciprocity, divisibility of class numbers.
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Brauer-Manin obstruction

Br(XF ) //

x

��

⊕
v Br(XFv )

(xv )v
��

0 // Br(F ) //
⊕

v Br(Fv )

∑
v invv // Q/Z // 0,

We have
X (F ) ⊂ X (F ) ⊆ X (AF )Br ⊆ X (AF ),

where

X (AF )Br := ∩A∈Br(X ){(xv )v ∈ X (AF ) |
∑
v

inv(A(xv )) = 0}.

Manin’s formulation gives a more systematic approach to identifying
the algebraic structure behind the obstruction.

Existence of points
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Effectivity of Brauer-Manin obstructions

The obstruction group for geometrically rational surfaces

Br(XF )/Br(F ) = H1(Gal(F̄/F ),Pic(X̄ )).

Kresch-T. 2006

Let X ⊂ Pn be a geometrically rational surface over a number field F .
Then there is an effective algorithm to compute X (AF )Br.

Kresch-T. 2010

Let X ⊂ Pn be a surface over a number field F . Assume that

the geometric Picard group of X is torsion free and is generated by
finitely many divisors, each with a given set of defining equations

Br(X ) can be bounded effectively.

Then there is an effective algorithm to compute X (AF )Br.

Existence of points
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Effectivity of Brauer-Manin obstructions

Hassett-Kresch-T. 2012

Let X be a K3 surface over a number field F of degree 2. Then there
exists an effective algorithm to compute:

Pic(X̄ ), together with the Galois action;

Br(X )/Br(F ) and X (AF )Br.

Previously:

computation of Pic(X̄ ) on some Kummer K3 surfaces: Elsenhans,
Jahnel, van Luijk

computation of X (AF )Br for some Kummer surfaces (diagonal
quartics): Bright, Skorobogatov, Swinnerton-Dyer, Ieronymou, ...

computations with Br(X )[2] on general degree two K3 surfaces:
Hassett, Varilly-Alvarado

Finiteness of Br(X )/Br(F ) for all K3 surfaces over number fields
(Skorobogatov-Zarhin 2007)

Existence of points
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Effectivity of Brauer-Manin obstructions

Main ingredients:

effective Kuga-Satake correspondence, relies on an effective
construction of the Bailey-Borel compactification of the moduli
space of polarized K3 surfaces;

the work of Masser-Wüstholz on the effective Tate conjecture for
abelian varieties;

effective GIT, Matsusaka, Hilbert Nullstellensatz, etc..

Existence of points
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Computing the obstruction group

Let X be a smooth intersection of two quadrics in P4 over Q (a Del
Pezzo surface of degree 4).

The Galois action on the 16 lines factors
through the Weyl group W (D5) (a group of order 1920).

Bright, Bruin, Flynn, Logan 2007

If the degree of the splitting field over Q is > 96 then

H1(Gal(F̄/F ),Pic(X̄ )) = 0.

In all other cases, the obstruction group is either

1,Z/2Z, or (Z/2Z)2.

Implement an algorithm to compute the BM obstruction and
provide more examples of Iskovskikh type.
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Uniqueness of the Brauer-Manin obstruction

Conjecture (Colliot-Thélène–Sansuc 1980)

Let X be a smooth projective rationally-connected surface over a
number field F , e.g., an intersection of two quadrics in P4 or a cubic in
P3. Then

X (F ) = X (AF )Br.

In particular, existence of rational points on rationally-connected
surfaces would be decidable.

Colliot-Thélène–Sansuc–Swinnerton-Dyer 1987:
Degree 4 Del Pezzo surfaces admitting a conic bundle X → P1.The
conjecture is open for general degree 4 Del Pezzo surfaces.

Existence of points



Uniqueness of the Brauer-Manin obstruction

Conjecture (Colliot-Thélène–Sansuc 1980)

Let X be a smooth projective rationally-connected surface over a
number field F , e.g., an intersection of two quadrics in P4 or a cubic in
P3. Then

X (F ) = X (AF )Br.

In particular, existence of rational points on rationally-connected
surfaces would be decidable.

Colliot-Thélène–Sansuc–Swinnerton-Dyer 1987:
Degree 4 Del Pezzo surfaces admitting a conic bundle X → P1.The
conjecture is open for general degree 4 Del Pezzo surfaces.

Existence of points



Uniqueness of the Brauer-Manin obstruction

Conjecture (Colliot-Thélène–Sansuc 1980)

Let X be a smooth projective rationally-connected surface over a
number field F , e.g., an intersection of two quadrics in P4 or a cubic in
P3. Then

X (F ) = X (AF )Br.

In particular, existence of rational points on rationally-connected
surfaces would be decidable.

Colliot-Thélène–Sansuc–Swinnerton-Dyer 1987:
Degree 4 Del Pezzo surfaces admitting a conic bundle X → P1.

The
conjecture is open for general degree 4 Del Pezzo surfaces.

Existence of points



Uniqueness of the Brauer-Manin obstruction

Conjecture (Colliot-Thélène–Sansuc 1980)

Let X be a smooth projective rationally-connected surface over a
number field F , e.g., an intersection of two quadrics in P4 or a cubic in
P3. Then

X (F ) = X (AF )Br.

In particular, existence of rational points on rationally-connected
surfaces would be decidable.

Colliot-Thélène–Sansuc–Swinnerton-Dyer 1987:
Degree 4 Del Pezzo surfaces admitting a conic bundle X → P1.The
conjecture is open for general degree 4 Del Pezzo surfaces.

Existence of points



Do we believe this conjecture?

Recall that a general Del Pezzo surface X has points locally, and that

Br(X )/Br(F ) = 1.

The Galois group action on the exceptional curves has to be small to
allow an obstruction; this is counterintuitive.

Elsenhans–Jahnel 2007: Thousands of examples of cubic surfaces
over Q with different Galois actions, the conjecture holds in all cases.
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Del Pezzo surfaces over Fq(t)

Theorem (Hassett-T. 2011)

Let k be a finite field with at least 22 · 174 elements and X a general
Del Pezzo surface of degree 4 over F = k(t) such that its integral
model

X → P1

is a complete intersection in P1 × P4 of two general forms of bi-degree
(1, 2). Then X (F ) 6= ∅.

The idea of proof will follow....
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K3 surfaces

Potential density: Zariski density after a finite extension of the field.

Bogomolov-T. 1999

If X is a K3 surface which is either elliptic or has infinite
automorphisms then potential density holds for X .

What about general K3 surfaces, i.e., those with Picard rank one?

Let X ⊂ P1 × P3 be a general hypersurface of bidegree (1, 4).
Then the K3 surface fibration X → P1 has a Zariski dense set of
sections, i.e., such K3 surfaces over F = C(t) have Zariski dense
rational points; more generally, this holds for general pencils of K3
surfaces of degree ≤ 18 (Hassett-T. 2008)

Same holds, if X ⊂ P1 × P3 is given by a general form of bidegree
(2, 4) (Zhiyuan Li 2011)
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Higher dimensions

Potential density holds for:

all smooth Fano threefolds, with the possible exception of

W2
2:1−→ P3, ramified in a degree 6 surface S6 (Harris-T. 1998,

Bogomolov-T. 1998)

W2, provided S6 is singular; similar results in dimension 4
(Chelsov-Park 2004, Cheltsov 2004)

varieties of lines on general cubic fourfolds (Amerik-Voisin 2008,
Amerik-Bogomolov-Rovinski)

varieties of lines of some special cubic fourfolds, i.e., those not
containing a plane and admitting a hyperplane section with 6
ordinary double points in general linear position (Hassett-T. 2008)
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Counting rational points

Counting problems depend on:

a projective embedding X ↪→ Pn;

a choice of X ◦ ⊂ X ;

a choice of a height function H : Pn(F )→ R>0.

Main problem

N(X ◦(F ),B) = #{x ∈ X ◦(F ) | H(x) ≤ B} ?∼ c · Ba log(B)b−1
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The geometric framework

Conjecture (Manin 1989)

Let X ⊂ Pn be a smooth projective Fano variety over a number field
F , in its anticanonical embedding.

Then there exists a Zariski open
subset X ◦ ⊂ X such that

N(X ◦(F ),B) ∼ c · B log(B)b−1, B→∞,

where b = rkPic(X ).

We do not know, in general, whether or not X (F ) is Zariski dense,
even after a finite extension of F . Potential density of rational points
has been proved for some families of Fano varieties, but is still open,
e.g., for hypersurfaces Xd ⊂ Pd , with d ≥ 5.
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The function field case / Batyrev 1987

Let F = Fq(B) be a global function field and X/F a smooth Fano
variety. Let

π : X → B

be a model. A point x ∈ X (F ) gives rise to a section x̃ of π. Let L be
a very ample line bundle on X . The height zeta function takes the
form

Z(s) =
∑
x̃

q−(L,x̃)s

=
∑
d

Md(Fq)q−ds ,

where d = (L, x̃) and Md is the space of sections of degree d .
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The function field case / Batyrev 1987

The dimension of Md can be estimated, provided x̃ is unobstructed:

dimMd ∼ (−KX , x̃), x̃ ∈Md .

Heuristic assumption:

Md(Fq) = qdim(Md )

leads to a modified zeta function

Zmod(s) =
∑

q−(L,x̃)s+(−KX ,x̃),

its analytic properties are governed by the ratio of the linear forms

(−KX , ·) and (L, ·)
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The Batyrev–Manin conjecture

N(X ◦,L,B) = c · Ba(L) · log(B)b(L)−1(1 + o(1)), B→∞

a(L) = inf{a | a[L] + [KX ] ∈ Λeff(X )},
b(L) = codimension of the face of Λeff(X ) containing
a(L)[L] + [KX ],

c(−KX ) = α(X ) · β(X ) · τ(KX ) – “volume” of the effective cone,
nontrivial part of the Brauer group Br(X )/Br(F ), Peyre’s
Tamagawa type number,

c(L) =
∑

y c(L|Xy ), where X → Y is a “Mori fiber space” –
L-primitive fibrations of Batyrev–T.
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Justification

G. Segal 1979

Contd(S2,Pn(C)) ∼ Hold(S2,Pn(C)), d →∞

(isomorphism of
πi , for i ≤ d).

H∗(Hold(S2,Pn(C))) stabilizes, for d →∞.

This was generalized to Grassmannians and toric varieties as target
spaces by Kirwan 1986, Guest 1994, and others.

Basic idea

Md(Fq) ∼ qdim(Md ), for d →∞, provided the homology stabilizes.
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Ellenberg–Venkatesh–Westerland 2009

Effective stabilization of homology of Hurwitz spaces

There exist A,B,D such that

dimHd(HurcG ,n) = dimHd(HurcG ,n+D),

for n ≥ Ad + B.

This has applications to Cohen–Lenstra heuristics over function fields
of curves.

Applications in the context of height zeta functions?
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Results over Q

Extensive numerical computations confirming Manin’s conjecture, and
its refinements, for Del Pezzo surfaces, hypersurfaces of small degree
in dimension 3 and 4.

Many recent theoretical results on asymptotics of points of bounded
height on cubic surfaces and other Del Pezzo surfaces, via (uni)versal
torsors (Browning, de la Breteche, Derenthal, Heath-Brown, Peyre,
Salberger, Wooley, ...)

Caution: counterexamples to Manin’s conjecture for cubic surface
bundles over P1 (Batyrev-T. 1996). These are compactifications of
affine spaces.
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Points of smallest height

Legendre: If ax2 + by2 = cz2 is solvable mod p, for all p, then it is
solvable in Z.

Moreover, the height of the smallest solution is bounded
by
√
abc.

An effective bound on the error term in the circle method (or in the
other asymptotic results) also gives an effective bound on Hmin, the
height of smallest solutions.

In particular, Manin’s and Peyre’s conjecture suggest that

Hmin ≤
1

τ
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Points of smallest height

There are extensive numerical data for smallest points on Del Pezzo
surfaces, Fano threefolds. E.g.,

Elsenhans-Jahnel 2010

Counting points



How are all of these related? (Hassett-T.)

Let X be a Del Pezzo surface over F = Fq(t) and

π : X → P1.

its integral model. Fix a height, and consider the spaces Md of
sections of π of height d (degree of the section).

Ideal scenario

Md are geometrically irreducible, for d � 0

Md dominate the intermediate Jacobian IJ(X ) of X
there is a critical d0, related to the height of X , such that Md0 is
either birational to IJ(X ) or to a P1-bundle over IJ(X )

for d ≥ d0, Md fibers over IJ(X ), with general fiber a rationally
connected variety
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Del Pezzo surfaces over Fq(t)

We consider fibrations
π : X → P1,

with general fiber a degree-four Del Pezzo surface and with square-free
discriminant. In this situation, we have an embedding

X ⊂ P(π∗ω
−1
π ).

We have
π∗ω

−1
π = ⊕5

i=1OP1(−ai ),

with
a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5,

occurring cases are discussed by Shramov (2006), in his investigations
of rationality properties of such fibrations.

Counting points



Del Pezzo surfaces over Fq(t)

We consider fibrations
π : X → P1,

with general fiber a degree-four Del Pezzo surface and with square-free
discriminant. In this situation, we have an embedding

X ⊂ P(π∗ω
−1
π ).

We have
π∗ω

−1
π = ⊕5

i=1OP1(−ai ),

with
a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5,

occurring cases are discussed by Shramov (2006), in his investigations
of rationality properties of such fibrations.

Counting points



Del Pezzo surfaces over Fq(t)

We assume that π∗ω
−1
π is generic, i.e., a5 − a1 ≤ 1; we can realize

X ⊂ P1 × Pd , d = 4, 5, . . . , 8,

as a complete intersection.

Theorem (Hassett-T. 2011)

Let k be a finite field with at least 22 · 174 elements and X a general
Del Pezzo surface of degree 4 over F = k(t) such that its integral
model

X → P1

is a complete intersection in P1 × P4 of two general forms of bi-degree
(1, 2). Then X (F ) 6= ∅.
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Idea of proof

Write X ⊂ P1 × P4 as a complete intersection

P1s + Q1t = P2s + Q2t = 0,

where Pi ,Qi are quadrics in P4.

The projection

π : X → P1

has 16 constant sections corresponding to solutions y1, . . . , y16 of

P1 = Q1 = P2 = Q2 = 0.
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Idea of proof

Projection onto the second factor gives a (nonrational) singular quartic
threefold Y:

P1Q2 − Q1P2 = 0,

with nodes at y1, . . . , y16.

The projection X → Y is a small resolution
of the singularities of Y. We analyse lines in the smooth locus of Y.

Main observation

There exists an irreducible curve (of genus 289) of lines l ⊂ Y, giving
sections of π.
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