Special tree-width and the verification of monadic second-order graph properties with edge quantifications

Reference : B.C. : On the model-checking of monadic second-order formulas with edge set quantifications. *Discrete Applied Maths*, 2012

Edge quantifications

MSO formulas using edge quantifications

 $G = (V_G, edg_G(.,.)) \qquad Inc(G) = (V_G \cup E_G, inc_G(.,.))$

for G undirected : $inc_G(e, v) \Leftrightarrow$

v is a vertex (in V_G) of edge e (in E_G)

FPT for clique-width FPT for tree-width

Tree-width, path-width and clique-width

```
For G directed or undirected :

cwd(G) < 2^{2.twd(G) + 1}
```

No polynomial bound : $cwd(G) \leq poly(twd(G))$

```
In both cases : cwd(G) \leq pwd(G) + 2. Why ??
```

pwd = path-width = tree-width with paths instead of trees

FPT model-checking algorithms

For MSO properties, the parameter is clique-width.

The case of MSO₂ formulas reduces to that of MSO ones:
1) if G has tree-width k ≥ 2 → Inc(G) has tree-width k, hence, clique-width ≤ 2^{O(k)} (exponential blow-up).
2) every MSO₂ property of G is an MSO property of Inc(G). To avoid the 2^{O(k)} blow-up, one could build fly-automata running on terms representing tree-decompositions.

Problem: Because of // (parallel composition) a vertex may correspond to several positions in the term. This yields also an exponential blow-up in automata sizes. How to avoid // ?

Special tree-width

Definition: Special tree-width is the minimal width of a special treedecomposition (T,f) where :

(a) T is a rooted tree,(b) the set of nodes whose boxescontain any vertex is a *directed path*

Motivations: (1) Comparison with clique-width (no exponential blow-up).
(2) The automata for checking adjacency are exponentially smaller than for bounded tree-width.

Properties of special tree-width (sptwd)

1)
$$twd(G) \leq sptwd(G) \leq pwd(G)$$

2)
$$cwd(G) \le sptwd(G) + 2$$
 (for G simple).
whereas $cwd(G) \le 2^{2.twd(G) + 1}$ (exponential is not avoidable)

3) sptwd(G) ≤ 20 (twd(G)+1). MaxDegree(G)
 (for a set of graphs of bounded degree, bounded special tree-width is equivalent to bounded tree-width).

 4) Trees have special tree-width 1 (= tree-width) but graphs of tree-width 2 have unbounded special tree-width.

- 5) The class of graphs of special tree-width \leq k is closed under:
 - reversals of edge directions,
 - taking topological minors (subgraphs and smoothing vertices)
 but not under taking minors.

Terms that characterize special tree-width;

Definition: Special terms

They use the graph operations that define clique-width for graphs withmultiple edges(Key point : no "vertex fusion" is needed)

1) The set of labels contains \perp (to mean "terminated vertex")

2) Operations Relab $a \longrightarrow c$ and Adda, b only if $a, b \neq \bot$

3) Subterms define graphs with ≤ 1 vertex labelled by *a* if $a \neq \bot$ 4) *Adda,b* (*t*) allowed as subterm only if G(*t*) has one vertex **x** labelled by *a* and one vertex **y** labelled by *b*. Similar definitions for directed graphs.

Edges are added "one by one" and are in bijection with the occurrences of the operations *Adda,b*, that can define multiple edges.

Proposition: (1) G has special tree-width $\leq k \Leftrightarrow$ it is defined by a special term using $\leq k + 2$ labels (including the particular label \perp) (2) cwd(G) \leq sptwd(G) + 2

We will compare:

path-width and clique-width,

tree-width and clique-width,

special tree-width and clique-width

Comparing path-width and clique-width :


```
cwd(G) \leq pwd(G) + 2
```

Idea: By traversing bottom-up the path decomposition, by using 4 colors + \bot , the clique-width operations can add, one by one, new vertices (using \oplus i) and new edges (using Adda,b or $\overrightarrow{Adda,b}$).

 \perp is for "terminated vertices".

For special tree-width (as for path-width) : $cwd(G) \leq sptwd(G)+2$

The red dotted edges are not incident.

Two "brother" boxes (*b*, *e*) are disjoint. This is the characteristic property of *special tree-decompositions* Special tree-width is interesting for model-checking of MSO₂ properties (as we will see) but the *parsing* problem is open :

Can one find an O($n^{g(k)}$) algorithm ?:

- that reports that the input graph G (with n vertices) has special tree-width more than k or

- outputs a special tree-decomposition witnessing that the special tree-width of G is $\leq f(k)$ (for a fixed function f hopefully not exponential).

Note: We can use the algorithms that produce path-decompositions

Automata for the model-checking of MSO₂ formulas

We need:

Terms to represent graphs, over appropriate operations.
 A representation of vertices *and edges* by occurrences of operations and constants in these terms.

2.1 : For "clique-width" terms : we have *no* good representation of edges because each occurrence of $Add_{a,b}$ may add simultaneously an unbounded number of edges.

2.2 : For special terms : each edge is produced by a unique occurrence of $Add_{a,b}$. This gives what we want for graphs of bounded special tree-width.

Using special terms :

The leaves represent the vertices.

The nodes labelled $Add_{a,b}$ and $Add_{a,c}$ represent the edges ; each occurrence of $Add_{a,b}$ represents one of the two parallel edges The automata for edg(X,Y)

and inc(X,Y) (incidence) have

 $O(k^2)$ and O(k) states respectively for sptwd at most k.

2.3 : Case of terms characterizing tree-width

First idea : make them into "clique-width terms" for the *incidence graph*. But:

clique-width $\leq 2^{O(\text{tree-width})} \rightarrow \text{too large automata.}$

Second idea : handling them "directly", as for "clique-width terms"

The difficulty is to have a bijection between nodes in the term and the vertices and edges of the graph.

Forgeta b First possibility Forgeth Vertices are in bijection with a Forget the occurrences of *Forget* operations. The edges are at the leaves of the tree, *below* the nodes ab С representing their ends. ab ac The automaton for edg(X, Y)has $2^{\Theta(k.k)}$ states (compare with $O(k^2)$ for sptwd). Too bad for a basic property !

Second possibility

Vertices are at the leaves, the edges are at nodes *close to* those representing their ends. Because of *I* which fuses some vertices, each vertex is represented by several leaves. ab

On the figure, vertex a is represented by two leaves.

b

'a

С

Equality of vertices is an equivalence relation $\underline{\sim}$ on leaves.

Hence: there exists a set of vertices X such that ...

is expressed by:

there exists a set of leaves X, saturated for \sim such that ...

Same exponential blow up as with the second possibility.

The responsible is // (that is not needed for representing special tree-decompositions).

Conclusion

Special tree-width is less powerful than tree-width, but the constructions of automata are simpler. The parsing problem is open.

In many cases (in particular bounded degree) special treewidth is linearly bounded in tree-width.