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Cayley graphs

Definition
G = 〈S〉 is a group. The Cayley graph Γ(G,S) has vertex
set G with g,h connected if and only if gs = h or hs = g
for some s ∈ S.

By definition, Γ(G,S) is undirected.

Definition
The diameter of Γ(G,S) is

diam Γ(G,S) = max
g∈G

min
k

g = s1 · · · sk , si ∈ S ∪ S−1.

(Same as graph theoretic diameter.)
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How large can the diameter be?

The diameter can be very small:

diam Γ(G,G) = 1

The diameter also can be very big:
G = 〈x〉 ∼= Zn, diam Γ(G, {x}) = bn/2c

More generally, G with large abelian factor group may
have Cayley graphs with diameter proportional to |G|.
An easy argument shows that diam Γ(G,S) ≥ log2|S| |G|.
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Rubik’s cube

S = {(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)

(11,35,27,19), (9,11,16,14)(10,13,15,12)(1,17,41,40)

(4,20,44,37)(6,22,46,35), (17,19,24,22)(18,21,23,20)

(6,25,43,16)(7,28,42,13)(8,30,41,11), (25,27,32,30)

(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24),

(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)

(1,14,48,27), (41,43,48,46)(42,45,47,44)(14,22,30,38)

(15,23,31,39)(16,24,32,40)}

Rubik := 〈S〉, |Rubik | = 43252003274489856000.

20 ≤ diam Γ(Rubik ,S) ≤ 29 (Rokicki 2009)
diam Γ(Rubik ,S ∪ {s2 | s ∈ S}) = 20 (Rokicki 2009)
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The diameter of groups
Definition

diam (G) := max
S

diam Γ(G,S)

Conjecture (Babai, in [Babai,Seress 1992])
There exists a positive constant c such that:
G simple, nonabelian⇒ diam (G) = O(logc |G|).

Conjecture true for

PSL(2,p), PSL(3,p) (Helfgott 2008, 2010)
and, after some further generalizations by Dinai,
Gill-Helfgott,. . .
Lie-type groups of bounded rank (Pyber, E. Szabó
2011) and (Breuillard, Green, Tao 2011)

What about alternating groups?
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Alternating groups: why are they a difficult
case?
Attempt # 1: Techniques for Lie-type groups
Diameter results for Lie-type groups are proven by
product theorems:

Theorem
There exists a polynomial c(x) such that if G is simple,
Lie-type of rank r , G = 〈A〉 then A3 = G or

|A3| ≥ |A|1+1/c(r).

In particular, for bounded r , we have |A3| ≥ |A|1+ε for
some constant ε.

Given G = 〈S〉, O(log log |G|) applications of the theorem
give all elements of G.
Tripling length O(log log |G|) times gives diameter
3O(log log |G|) = (log |G|)c .
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Product theorems are false in Altn.

Example
G = Altn, H ∼= Am ≤ G, g = (1,2, . . . ,n) (n odd).
S = H ∪ {g} generates G, |S3| ≤ 9(m + 1)(m + 2)|S|.

For example, if m ≈
√

n then growth is too small.

Moreover: many of the techniques developed for Lie-type
groups are not applicable. No varieties in Altn or Symn,
hence no “escape from subvarieties” or dimensional
estimates.

Escape: guarantee that you can leave an exceptional set
(a variety V of codimension > 0.
Dimensional estimates = estimates of type

|Ak ∩ V | ∼ |A|
dim(V )
dim(G) .
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Attempt # 2: construction of a 3-cycle

Any g ∈ Altn is the product of at most (n/2) 3-cycles:

(1,2,3,4,5,6,7) = (1,2,3)(1,4,5)(1,6,7)

(1,2,3,4,5,6) = (1,2,3)(1,4,5)(1,6)

(1,2)(3,4) = (1,2,3)(3,1,4)

It is enough to construct one 3-cycle (then conjugate to
all others).
Construction in stages, cutting down to smaller and
smaller support.

Support of g ∈ Sym(Ω): supp(g) = {α ∈ Ω | αg 6= α}.
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One generator has small support

Theorem (Babai, Beals, Seress 2004)

G = 〈S〉 ∼= Altn and |supp(a)| < (1
3 − ε)n for some a ∈ S.

Then diam Γ(G,S) = O(n7+o(1)).

Recent improvement:

Theorem (Bamberg, Gill, Hayes, Helfgott, Seress,
Spiga 2012)
G = 〈S〉 ∼= Altn and |supp(a)| < 0.63n for some a ∈ S.
Then diam Γ(G,S) = O(nc).

The proof gives c = 78 (with some further work,
c = 66 + o(1)).
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How to construct one element with moderate
support?

Up to recently, only one result with no conditions on the
generating set.

Theorem (Babai, Seress 1988)
Given Altn = 〈S〉, there exists a word of length
exp(

√
n log n(1 + o(1))) on S, defining h ∈ Altn with

|supp(h)| ≤ n/4. As a consequence,

diam (Altn) ≤ exp(
√

n log n(1 + o(1))).
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A quasipolynomial bound

Theorem (Helfgott, Seress 2011)

diam (Altn) ≤ exp(O(log4 n log log n)).

(Babai’s conjecture states in this case that
diam (Altn) ≤ nO(1) = exp(O(log n)).)

Corollary
G ≤ Symn transitive
⇒ diam (G) ≤ exp(O(log4 n log log n)).

The corollary follows with help from

Theorem (Babai, Seress 1992)
G ≤ Symn transitive
⇒ diam (G) ≤ exp(O(log3 n)) · diam (Ak ) where Ak is the
largest alternating composition factor of G.
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The main idea of (Babai, Seress 1988)
Given Alt(Ω) ∼= Altn = 〈S〉, construct h ∈ Altn with
|supp(h)| ≤ n/4 as a short word on S.

p1 = 2,p2 = 3, . . . ,pk primes:
∏k

i=1 pi > n4

Construct g ∈ G containing cycles of length
p1,p1,p2, . . . ,pk . (In general: can always construct (as a
word of length ≤ nr ) a g containing a given pattern of
length r .)

For α ∈ Ω, let `α :=length of g-cycle containing α.

For 1 ≤ i ≤ k , let Ωi := {α ∈ Ω : pi | `α}.

Claim
There exists i ≤ k with |Ωi | ≤ n/4.

Prove claim by double-counting.
After claim is proven: take h := gorder(g)/pi . Then
supp(h) ⊆ Ωi and so |supp(h)| ≤ n/4. Landau:

order(g) = e
√

n log n(1+o(1)).
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Ideas of (Helfgott, Seress 2011): from
subgroups to subsets
In common with groups of Lie type:
Some group-theoretical statements are robust – they
work for all sets rather than just for subgroups.
Important basic example: orbit-stabilizer theorem for sets.

Lemma (Orbit-stabilizer, generalized to sets)
Let G be a group acing on a set X . Let x ∈ X, and let
A ⊂ G be non-empty. Then

|(A−1A) ∩ Stab(x)| ≥ |A|
|Ax |

.

Moreover,

|A ∩ Stab(x)| ≤ |AA|
|Ax |

.

Classical case: A a subgroup.
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Which actions?

Action of a group G on itself by conjugation
Action of a group G on G/H (by multiplication)
Action of a setwise stabilizer Sym(n)Σ on a pointwise
stabilizer Sym(n)Σ, by conjugation.

Consider also (in other ways) the natural actions:
SLn(K ) acts on K n

Sym(n) acts on X = {1,2, . . . ,n}
(and X = {1,2, . . . ,n}k , etc.)
The first action is useful because it is geometric.
The second action is useful because X is small.
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From subgroups to subsets, II
Other results on subgroups that can be adapted.

In common with groups of Lie type:

Results with algorithmic proofs: Bochert (1889) showed
that Altn has no large primitive subgroups; the same
proof gives that, for A ⊂ Altn large with 〈A〉 primitive,
An4

= Altn. Also, e.g., Schreier.

Elementary proofs of parts of the Classification: work by
Babai, Pyber.
(In Breuillard-Green-Tao, for groups of Lie type: adapt
Larsen-Pink; a classification of subgroups becomes a
classification of “approximate subgroups”, i.e., subsets
A ⊂ Altn such that |AAA| ≤ |A|1+δ.) Here: a
combinatorial-probabilistic proof becomes a stochastic
proof. The uniform distribution gets replaced by the
outcome of a random walk. Possible for actions G→ X
with X small.
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The splitting lemma

Example: Babai’s splitting lemma.

Lemma (Babai)
Let H < Sym(n) be 2-transitive.
Let Σ ⊂ [n] = {1,2, . . . ,n}. Assume that there are at least
ρn2 ordered pairs in [n]× [n] such that there is no
g ∈ H([Σ]) with αg = β.
Then |H| ≤ nO(|Σ|(log n)/ρ).
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The splitting lemma

Example: Babai’s splitting lemma.

Lemma (Babai-H-S)

Let A ⊂ Symn with A = A−1, e ∈ A and 〈A〉 2-transitive.
Let Σ ⊂ [n] = {1,2, . . . ,n}. Assume that there are at least
ρn2 ordered pairs in [n]× [n] such that there is no
g ∈ (Ak )([Σ]) with αg = β and k = nO(1).
Then |H| ≤ nO(|Σ|(log n)/ρ).

Useful: it guarantees the existence of long stabilizer
chains

A ⊃ Aα1 ⊃ A(α1,α2) ⊃ A(α1,α2,... ) ⊃ . . . ⊃ A(α1,α2,...,αr ),

where r � (log |A|)/(log n)2 and |α
Aα1,...,αj−1
j | ≥ 0.9n for

every j ≤ r .
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Outline of proof of main theorem

Given: long stabilizer chain for A ⊂ Symn with
Σ = {α1, α2, . . . αr}.
Goal: increase length r of long stabilizer chain by factor
> 1. (Can then recur.)

By Bochert and pigeonhole, A′ = (Am)Σ, m = nO(1), acts
like Sym(Σ′) (Σ′ ⊂ Σ large) on Σ.
We let A′ act on A′′ = A(Σ) ⊂ Symn|(Σ) by conjugation.

〈A′′〉 2-transitive on [n]− Σ (or almost?)
Then there is a small subset A′′′ ⊂ (A′′)nO(log n)

with 〈A′′′〉
2-transitive. (Proof by random walks again!) By
orbit-stabilizer, this makes A′′′′ = (Am′)(Σ) large (for
m′ = nO(log n)).
Apply splitting lemma to prolong α1, α2, . . . , αr ; done.
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Outline of proof, continued: the other
induction

〈A′′〉 not 2-transitive on [n]− Σ (or almost?)

Then 〈A′′〉 decomposes into permutation groups on
n′ ≤ 0.9n elements; by induction, the diameter is small.
By (Babai, Seress 1988), there is an element g of small
support – use that as an existence statement; can reach
g by small diameter. Done.
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