H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

The diameter of permutation groups

H. A. Helfgott and Á. Seress

July 2013

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Cayley graphs

Definition

 $G = \langle S \rangle$ is a group. The Cayley graph $\Gamma(G, S)$ has vertex set *G* with *g*, *h* connected if and only if gs = h or hs = g for some $s \in S$.

By definition, $\Gamma(G, S)$ is undirected.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Cayley graphs

Definition

 $G = \langle S \rangle$ is a group. The Cayley graph $\Gamma(G, S)$ has vertex set *G* with *g*, *h* connected if and only if gs = h or hs = g for some $s \in S$.

By definition, $\Gamma(G, S)$ is undirected.

Definition

The diameter of $\Gamma(G, S)$ is

diam $\Gamma(G, S) = \max_{g \in G} \min_{k} g = s_1 \cdots s_k, \ s_i \in S \cup S^{-1}.$

(Same as graph theoretic diameter.)

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

How large can the diameter be?

The diameter can be very small:

diam $\Gamma(G, G) = 1$

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

How large can the diameter be?

The diameter can be very small:

diam $\Gamma(G, G) = 1$

The diameter also can be very big: $G = \langle x \rangle \cong Z_n$, diam $\Gamma(G, \{x\}) = \lfloor n/2 \rfloor$

More generally, *G* with large abelian factor group may have Cayley graphs with diameter proportional to |G|. An easy argument shows that diam $\Gamma(G, S) \ge \log_{2|S|} |G|$.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Rubik's cube

$$\begin{split} \mathcal{S} &= \{(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18) \\ (11,35,27,19),(9,11,16,14)(10,13,15,12)(1,17,41,40) \\ (4,20,44,37)(6,22,46,35),(17,19,24,22)(18,21,23,20) \\ (6,25,43,16)(7,28,42,13)(8,30,41,11),(25,27,32,30) \\ (26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24), \\ (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29) \\ (1,14,48,27),(41,43,48,46)(42,45,47,44)(14,22,30,38) \\ (15,23,31,39)(16,24,32,40)\} \end{split}$$

Rubik := $\langle S \rangle$, *Rubik* = 43252003274489856000.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Rubik's cube

$$\begin{split} \mathcal{S} &= \{(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18) \\ (11,35,27,19),(9,11,16,14)(10,13,15,12)(1,17,41,40) \\ (4,20,44,37)(6,22,46,35),(17,19,24,22)(18,21,23,20) \\ (6,25,43,16)(7,28,42,13)(8,30,41,11),(25,27,32,30) \\ (26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24), \\ (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29) \\ (1,14,48,27),(41,43,48,46)(42,45,47,44)(14,22,30,38) \\ (15,23,31,39)(16,24,32,40)\} \end{split}$$

Rubik := $\langle S \rangle$, |*Rubik*| = 43252003274489856000.

 $20 \leq \operatorname{diam} \Gamma(\operatorname{Rubik}, S) \leq 29$ (Rokicki 2009)

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Rubik's cube

$$\begin{split} \mathcal{S} &= \{(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18) \\ (11,35,27,19),(9,11,16,14)(10,13,15,12)(1,17,41,40) \\ (4,20,44,37)(6,22,46,35),(17,19,24,22)(18,21,23,20) \\ (6,25,43,16)(7,28,42,13)(8,30,41,11),(25,27,32,30) \\ (26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24), \\ (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29) \\ (1,14,48,27),(41,43,48,46)(42,45,47,44)(14,22,30,38) \\ (15,23,31,39)(16,24,32,40)\} \end{split}$$

 $Rubik := \langle S \rangle$, |Rubik| = 43252003274489856000. $20 \le \text{diam } \Gamma(Rubik, S) \le 29$ (Rokicki 2009) $\text{diam } \Gamma(Rubik, S \cup \{s^2 \mid s \in S\}) = 20$ (Rokicki 2009)

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

The diameter of groups

Definition

diam
$$(G) := \max_{S} \operatorname{diam} \Gamma(G, S)$$

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

The diameter of groups

Definition

diam
$$(G) := \max_{S} \operatorname{diam} \Gamma(G, S)$$

Conjecture (Babai, in [Babai, Seress 1992])

There exists a positive constant *c* such that: *G* simple, nonabelian \Rightarrow diam (*G*) = *O*(log^{*c*} |*G*|).

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

The diameter of groups

Definition

$$\operatorname{diam}(G) := \max_{S} \operatorname{diam} \Gamma(G, S)$$

Conjecture (Babai, in [Babai, Seress 1992])

There exists a positive constant *c* such that: *G* simple, nonabelian \Rightarrow diam (*G*) = *O*(log^{*c*} |*G*|).

Conjecture true for

• PSL(2, *p*), PSL(3, *p*) (Helfgott 2008, 2010)

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

The diameter of groups

Definition

$$\operatorname{diam}(G) := \max_{S} \operatorname{diam} \Gamma(G, S)$$

Conjecture (Babai, in [Babai, Seress 1992])

There exists a positive constant *c* such that: *G* simple, nonabelian \Rightarrow diam (*G*) = *O*(log^{*c*} |*G*|).

Conjecture true for

 PSL(2, p), PSL(3, p) (Helfgott 2008, 2010) and, after some further generalizations by Dinai, Gill-Helfgott,...

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

The diameter of groups

Definition

$$\operatorname{diam}(G) := \max_{S} \operatorname{diam} \Gamma(G, S)$$

Conjecture (Babai, in [Babai, Seress 1992])

There exists a positive constant *c* such that: *G* simple, nonabelian \Rightarrow diam (*G*) = $O(\log^c |G|)$.

Conjecture true for

- PSL(2, p), PSL(3, p) (Helfgott 2008, 2010) and, after some further generalizations by Dinai, Gill-Helfgott,...
- Lie-type groups of bounded rank (Pyber, E. Szabó 2011) and (Breuillard, Green, Tao 2011)

What about alternating groups?

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Alternating groups: why are they a difficult case?

Attempt # 1: Techniques for Lie-type groups Diameter results for Lie-type groups are proven by product theorems:

Theorem

There exists a polynomial c(x) such that if G is simple, Lie-type of rank r, $G = \langle A \rangle$ then $A^3 = G$ or

$$|A^3| \ge |A|^{1+1/c(r)}.$$

In particular, for bounded *r*, we have $|A^3| \ge |A|^{1+\varepsilon}$ for some constant ε .

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Alternating groups: why are they a difficult case?

Attempt # 1: Techniques for Lie-type groups Diameter results for Lie-type groups are proven by product theorems:

Theorem

There exists a polynomial c(x) such that if G is simple, Lie-type of rank r, $G = \langle A \rangle$ then $A^3 = G$ or

$$|A^3| \ge |A|^{1+1/c(r)}.$$

In particular, for bounded *r*, we have $|A^3| \ge |A|^{1+\varepsilon}$ for some constant ε .

Given $G = \langle S \rangle$, $O(\log \log |G|)$ applications of the theorem give all elements of *G*. Tripling length $O(\log \log |G|)$ times gives diameter $3^{O(\log \log |G|)} = (\log |G|)^c$.

H. A. Helfgott and Á. Seress

Example

Introduction

Alternating groups

Proof ideas

Product theorems are false in Alt_n.

$G = \operatorname{Alt}_n$, $H \cong A_m \leq G$, g = (1, 2, ..., n) (*n* odd). $S = H \cup \{g\}$ generates G, $|S^3| \leq 9(m+1)(m+2)|S|$.

For example, if $m \approx \sqrt{n}$ then growth is too small.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Product theorems are false in Alt_n.

Example

$$G = \operatorname{Alt}_n, H \cong A_m \leq G, g = (1, 2, \dots, n) \text{ (}n \text{ odd).}$$

 $S = H \cup \{g\} \text{ generates } G, |S^3| \leq 9(m+1)(m+2)|S|.$

For example, if $m \approx \sqrt{n}$ then growth is too small.

Moreover: many of the techniques developed for Lie-type groups are not applicable. No varieties in Alt_n or Sym_n , hence no "escape from subvarieties" or dimensional estimates.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Product theorems are false in Alt_n.

Example

$$G = \operatorname{Alt}_n, H \cong A_m \leq G, g = (1, 2, \dots, n) \text{ (}n \text{ odd).}$$

 $S = H \cup \{g\} \text{ generates } G, |S^3| \leq 9(m+1)(m+2)|S|.$

For example, if $m \approx \sqrt{n}$ then growth is too small.

Moreover: many of the techniques developed for Lie-type groups are not applicable. No varieties in Alt_n or Sym_n , hence no "escape from subvarieties" or dimensional estimates.

Escape: guarantee that you can leave an exceptional set (a variety *V* of codimension > 0. Dimensional estimates = estimates of type $|A^k \cap V| \sim |A|^{\frac{\dim(V)}{\dim(G)}}$.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Attempt # 2: construction of a 3-cycle

Any $g \in Alt_n$ is the product of at most (n/2) 3-cycles: (1,2,3,4,5,6,7) = (1,2,3)(1,4,5)(1,6,7)

$$(1,2,3,4,5,6) = (1,2,3)(1,4,5)(1,6)$$

$$(1,2)(3,4) = (1,2,3)(3,1,4)$$

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Attempt # 2: construction of a 3-cycle

Any $g \in Alt_n$ is the product of at most (n/2) 3-cycles:

$$(1,2,3,4,5,6,7) = (1,2,3)(1,4,5)(1,6,7)$$

 $(1,2,3,4,5,6) = (1,2,3)(1,4,5)(1,6)$
 $(1,2)(3,4) = (1,2,3)(3,1,4)$

It is enough to construct one 3-cycle (then conjugate to all others).

Construction in stages, cutting down to smaller and smaller support.

Support of $g \in \text{Sym}(\Omega)$: supp $(g) = \{ \alpha \in \Omega \mid \alpha^g \neq \alpha \}$.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

One generator has small support

Theorem (Babai, Beals, Seress 2004)

 $G = \langle S \rangle \cong \operatorname{Alt}_n$ and $|\operatorname{supp}(a)| < (\frac{1}{3} - \varepsilon)n$ for some $a \in S$. Then diam $\Gamma(G, S) = O(n^{7+o(1)})$.

Recent improvement:

Theorem (Bamberg, Gill, Hayes, Helfgott, Seress, Spiga 2012)

 $G = \langle S \rangle \cong \operatorname{Alt}_n$ and $|\operatorname{supp}(a)| < 0.63n$ for some $a \in S$. Then diam $\Gamma(G, S) = O(n^c)$.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

One generator has small support

Theorem (Babai, Beals, Seress 2004)

 $G = \langle S \rangle \cong \operatorname{Alt}_n$ and $|\operatorname{supp}(a)| < (\frac{1}{3} - \varepsilon)n$ for some $a \in S$. Then diam $\Gamma(G, S) = O(n^{7+o(1)})$.

Recent improvement:

Theorem (Bamberg, Gill, Hayes, Helfgott, Seress, Spiga 2012)

 $G = \langle S \rangle \cong \operatorname{Alt}_n$ and $|\operatorname{supp}(a)| < 0.63n$ for some $a \in S$. Then diam $\Gamma(G, S) = O(n^c)$. The proof gives c = 78 (with some further work, c = 66 + o(1)).

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

How to construct one element with moderate support?

Up to recently, only one result with no conditions on the generating set.

Theorem (Babai, Seress 1988)

Given $Alt_n = \langle S \rangle$, there exists a word of length $exp(\sqrt{n \log n}(1 + o(1)))$ on *S*, defining $h \in Alt_n$ with $|supp(h)| \le n/4$. As a consequence,

diam (Alt_n) $\leq \exp(\sqrt{n \log n}(1 + o(1))).$

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

A quasipolynomial bound

Theorem (Helfgott, Seress 2011)

diam (Alt_n) $\leq \exp(O(\log^4 n \log \log n))$.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

A quasipolynomial bound

Theorem (Helfgott, Seress 2011)

diam (Alt_n) $\leq \exp(O(\log^4 n \log \log n))$.

(Babai's conjecture states in this case that diam (Alt_n) $\leq n^{O(1)} = \exp(O(\log n))$.)

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

A quasipolynomial bound

Theorem (Helfgott, Seress 2011)

diam (Alt_n) $\leq \exp(O(\log^4 n \log \log n))$.

(Babai's conjecture states in this case that diam (Alt_n) $\leq n^{O(1)} = \exp(O(\log n))$.)

Corollary

 $G \leq \operatorname{Sym}_n transitive$ $\Rightarrow \operatorname{diam} (G) \leq \exp(O(\log^4 n \log \log n)).$

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

A quasipolynomial bound

Theorem (Helfgott, Seress 2011)

diam $(Alt_n) \leq \exp(O(\log^4 n \log \log n)).$

(Babai's conjecture states in this case that diam (Alt_n) $\leq n^{O(1)} = \exp(O(\log n))$.)

Corollary

 $\begin{aligned} G &\leq \operatorname{Sym}_n \text{ transitive} \\ \Rightarrow \operatorname{diam} (G) &\leq \exp(O(\log^4 n \log \log n)). \end{aligned}$

The corollary follows with help from

Theorem (Babai, Seress 1992)

 $G \leq \text{Sym}_n$ transitive $\Rightarrow \text{diam} (G) \leq \exp(O(\log^3 n)) \cdot \text{diam} (A_k)$ where A_k is the largest alternating composition factor of G.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

The main idea of (Babai, Seress 1988) Given $Alt(\Omega) \cong Alt_n = \langle S \rangle$, construct $h \in Alt_n$ with $|supp(h)| \le n/4$ as a short word on *S*.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

The main idea of (Babai, Seress 1988) Given $Alt(\Omega) \cong Alt_n = \langle S \rangle$, construct $h \in Alt_n$ with $|supp(h)| \le n/4$ as a short word on *S*.

 $p_1 = 2, p_2 = 3, \dots, p_k$ primes: $\prod_{i=1}^k p_i > n^4$

Construct $g \in G$ containing cycles of length $p_1, p_1, p_2, \ldots, p_k$. (In general: can always construct (as a word of length $\leq n^r$) a g containing a given pattern of length r.)

For $\alpha \in \Omega$, let $\ell_{\alpha} :=$ length of *g*-cycle containing α .

For $1 \leq i \leq k$, let $\Omega_i := \{ \alpha \in \Omega : p_i \mid \ell_\alpha \}$.

Claim

There exists $i \leq k$ with $|\Omega_i| \leq n/4$.

Prove claim by double-counting. After claim is proven: take $h := g^{\text{order}(g)/p_i}$. Then $\text{supp}(h) \subseteq \Omega_i$ and so $|\text{supp}(h)| \leq n/4$. Landau: $\text{order}(g) = e^{\sqrt{n \log n}(1+o(1))}$.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Ideas of (Helfgott, Seress 2011): from subgroups to subsets

In common with groups of Lie type:

Some group-theoretical statements are robust – they work for all sets rather than just for subgroups. Important basic example: orbit-stabilizer theorem for sets.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Ideas of (Helfgott, Seress 2011): from subgroups to subsets

In common with groups of Lie type:

Some group-theoretical statements are robust – they work for all sets rather than just for subgroups. Important basic example: orbit-stabilizer theorem for sets.

Lemma (Orbit-stabilizer, generalized to sets)

Let G be a group acing on a set X. Let $x \in X$, and let $A \subset G$ be non-empty. Then

$$|(A^{-1}A) \cap Stab(x)| \geq \frac{|A|}{|Ax|}$$

Moreover,

$$|A \cap Stab(x)| \leq \frac{|AA|}{|Ax|}.$$

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Ideas of (Helfgott, Seress 2011): from subgroups to subsets

In common with groups of Lie type:

Some group-theoretical statements are robust – they work for all sets rather than just for subgroups. Important basic example: orbit-stabilizer theorem for sets.

Lemma (Orbit-stabilizer, generalized to sets)

Let G be a group acing on a set X. Let $x \in X$, and let $A \subset G$ be non-empty. Then

$$|(A^{-1}A) \cap Stab(x)| \geq \frac{|A|}{|Ax|}$$

Moreover,

$$|A \cap Stab(x)| \leq \frac{|AA|}{|Ax|}.$$

Classical case: A a subgroup.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Which actions?

Action of a group *G* on itself by conjugation Action of a group *G* on *G*/*H* (by multiplication) Action of a setwise stabilizer $Sym(n)_{\Sigma}$ on a pointwise stabilizer $Sym(n)_{\Sigma}$, by conjugation.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Which actions?

Action of a group *G* on itself by conjugation Action of a group *G* on G/H (by multiplication) Action of a setwise stabilizer $Sym(n)_{\Sigma}$ on a pointwise stabilizer $Sym(n)_{\Sigma}$, by conjugation. Consider also (in other ways) the natural actions: $SL_n(K)$ acts on K^n Sym(n) acts on $X = \{1, 2, ..., n\}$ (and $X = \{1, 2, ..., n\}^k$, etc.)

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Which actions?

Action of a group *G* on itself by conjugation Action of a group *G* on *G*/*H* (by multiplication) Action of a setwise stabilizer $Sym(n)_{\Sigma}$ on a pointwise stabilizer $Sym(n)_{\Sigma}$, by conjugation. Consider also (in other ways) the natural actions: $SL_n(K)$ acts on K^n Sym(n) acts on $X = \{1, 2, ..., n\}$ (and $X = \{1, 2, ..., n\}^k$, etc.) The first action is useful because it is geometric. The second action is useful because *X* is small.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

From subgroups to subsets, II

Other results on subgroups that can be adapted.
H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

From subgroups to subsets, II

Other results on subgroups that can be adapted.

In common with groups of Lie type:

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

From subgroups to subsets, II

Other results on subgroups that can be adapted.

In common with groups of Lie type:

Results with algorithmic proofs: Bochert (1889) showed that Alt_n has no large primitive subgroups; the same proof gives that, for $A \subset Alt_n$ large with $\langle A \rangle$ primitive, $A^{n^4} = Alt_n$. Also, e.g., Schreier.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

From subgroups to subsets, II

Other results on subgroups that can be adapted.

In common with groups of Lie type:

Results with algorithmic proofs: Bochert (1889) showed that Alt_n has no large primitive subgroups; the same proof gives that, for $A \subset Alt_n$ large with $\langle A \rangle$ primitive, $A^{n^4} = Alt_n$. Also, e.g., Schreier.

Elementary proofs of parts of the Classification: work by Babai, Pyber.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

From subgroups to subsets, II

Other results on subgroups that can be adapted.

In common with groups of Lie type:

Results with algorithmic proofs: Bochert (1889) showed that Alt_n has no large primitive subgroups; the same proof gives that, for $A \subset Alt_n$ large with $\langle A \rangle$ primitive, $A^{n^4} = Alt_n$. Also, e.g., Schreier.

Elementary proofs of parts of the Classification: work by Babai, Pyber.

(In Breuillard-Green-Tao, for groups of Lie type: adapt Larsen-Pink; a classification of subgroups becomes a classification of "approximate subgroups", i.e., subsets $A \subset \text{Alt}_n$ such that $|AAA| \leq |A|^{1+\delta}$.)

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

From subgroups to subsets, II

Other results on subgroups that can be adapted.

In common with groups of Lie type:

Results with algorithmic proofs: Bochert (1889) showed that Alt_n has no large primitive subgroups; the same proof gives that, for $A \subset Alt_n$ large with $\langle A \rangle$ primitive, $A^{n^4} = Alt_n$. Also, e.g., Schreier.

Elementary proofs of parts of the Classification: work by Babai, Pyber.

(In Breuillard-Green-Tao, for groups of Lie type: adapt Larsen-Pink; a classification of subgroups becomes a classification of "approximate subgroups", i.e., subsets $A \subset Alt_n$ such that $|AAA| \leq |A|^{1+\delta}$.) Here: a combinatorial-probabilistic proof becomes a stochastic proof. The uniform distribution gets replaced by the outcome of a random walk.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

From subgroups to subsets, II

Other results on subgroups that can be adapted.

In common with groups of Lie type:

Results with algorithmic proofs: Bochert (1889) showed that Alt_n has no large primitive subgroups; the same proof gives that, for $A \subset Alt_n$ large with $\langle A \rangle$ primitive, $A^{n^4} = Alt_n$. Also, e.g., Schreier.

Elementary proofs of parts of the Classification: work by Babai, Pyber.

(In Breuillard-Green-Tao, for groups of Lie type: adapt Larsen-Pink; a classification of subgroups becomes a classification of "approximate subgroups", i.e., subsets $A \subset \operatorname{Alt}_n$ such that $|AAA| \leq |A|^{1+\delta}$.) Here: a combinatorial-probabilistic proof becomes a stochastic proof. The uniform distribution gets replaced by the outcome of a random walk. Possible for actions $G \to X$ with X small.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

The splitting lemma

Example: Babai's splitting lemma.

Lemma (Babai)

Let H < Sym(n) be 2-transitive. Let $\Sigma \subset [n] = \{1, 2, ..., n\}$. Assume that there are at least ρn^2 ordered pairs in $[n] \times [n]$ such that there is no $g \in H_{([\Sigma])}$ with $\alpha^g = \beta$. Then $|H| \le n^{O(|\Sigma|(\log n)/\rho)}$.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

The splitting lemma

Example: Babai's splitting lemma.

Lemma (Babai-H-S)

Let $A \subset \text{Sym}_n$ with $A = A^{-1}$, $e \in A$ and $\langle A \rangle$ 2-transitive. Let $\Sigma \subset [n] = \{1, 2, ..., n\}$. Assume that there are at least ρn^2 ordered pairs in $[n] \times [n]$ such that there is no $g \in (A^k)_{([\Sigma])}$ with $\alpha^g = \beta$ and $k = n^{O(1)}$. Then $|H| \leq n^{O(|\Sigma|(\log n)/\rho)}$.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

The splitting lemma

Example: Babai's splitting lemma.

Lemma (Babai-H-S)

Let $A \subset \text{Sym}_n$ with $A = A^{-1}$, $e \in A$ and $\langle A \rangle$ 2-transitive. Let $\Sigma \subset [n] = \{1, 2, ..., n\}$. Assume that there are at least ρn^2 ordered pairs in $[n] \times [n]$ such that there is no $g \in (A^k)_{([\Sigma])}$ with $\alpha^g = \beta$ and $k = n^{O(1)}$. Then $|H| \leq n^{O(|\Sigma|(\log n)/\rho)}$.

Useful: it guarantees the existence of long stabilizer chains

$$A \supset A_{\alpha_1} \supset A_{(\alpha_1,\alpha_2)} \supset A_{(\alpha_1,\alpha_2,\dots)} \supset \dots \supset A_{(\alpha_1,\alpha_2,\dots,\alpha_r)},$$

where $r \gg (\log |A|)/(\log n)^2$ and $|\alpha_j^{A_{\alpha_1,\dots,\alpha_{j-1}}}| \ge 0.9n$ for every $j \le r$.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Outline of proof of main theorem

Given: long stabilizer chain for $A \subset \text{Sym}_n$ with $\Sigma = \{\alpha_1, \alpha_2, \dots, \alpha_r\}$. Goal: increase length *r* of long stabilizer chain by factor > 1. (Can then recur.)

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Outline of proof of main theorem

Given: long stabilizer chain for $A \subset \text{Sym}_n$ with $\Sigma = \{\alpha_1, \alpha_2, \dots \alpha_r\}$. Goal: increase length *r* of long stabilizer chain by factor > 1. (Can then recur.)

By Bochert and pigeonhole, $A' = (A^m)_{\Sigma}$, $m = n^{O(1)}$, acts like Sym(Σ') ($\Sigma' \subset \Sigma$ large) on Σ .

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Outline of proof of main theorem

Given: long stabilizer chain for $A \subset \text{Sym}_n$ with $\Sigma = \{\alpha_1, \alpha_2, \dots \alpha_r\}$. Goal: increase length *r* of long stabilizer chain by factor > 1. (Can then recur.)

By Bochert and pigeonhole, $A' = (A^m)_{\Sigma}$, $m = n^{O(1)}$, acts like $\operatorname{Sym}(\Sigma')$ ($\Sigma' \subset \Sigma$ large) on Σ . We let A' act on $A'' = A_{(\Sigma)} \subset \operatorname{Sym}_n|_{(\Sigma)}$ by conjugation.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Outline of proof of main theorem

Given: long stabilizer chain for $A \subset \text{Sym}_n$ with $\Sigma = \{\alpha_1, \alpha_2, \dots, \alpha_r\}$. Goal: increase length *r* of long stabilizer chain by factor > 1. (Can then recur.)

By Bochert and pigeonhole, $A' = (A^m)_{\Sigma}$, $m = n^{O(1)}$, acts like $\operatorname{Sym}(\Sigma')$ ($\Sigma' \subset \Sigma$ large) on Σ . We let A' act on $A'' = A_{(\Sigma)} \subset \operatorname{Sym}_n|_{(\Sigma)}$ by conjugation.

 $\langle A'' \rangle$ 2-transitive on $[n] - \Sigma$ (or almost?)

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Outline of proof of main theorem

Given: long stabilizer chain for $A \subset \text{Sym}_n$ with $\Sigma = \{\alpha_1, \alpha_2, \dots, \alpha_r\}$. Goal: increase length *r* of long stabilizer chain by factor > 1. (Can then recur.) By Bochert and pigeonhole, $A' = (A^m)_{\Sigma}$, $m = n^{O(1)}$, acts

like $\operatorname{Sym}(\Sigma')$ ($\Sigma' \subset \Sigma$ large) on Σ . We let A' act on $A'' = A_{(\Sigma)} \subset \operatorname{Sym}_n|_{(\Sigma)}$ by conjugation.

 $\langle A'' \rangle$ 2-transitive on $[n] - \Sigma$ (or almost?) Then there is a small subset $A''' \subset (A'')^{n^{O(\log n)}}$ with $\langle A''' \rangle$ 2-transitive. (Proof by random walks again!) By orbit-stabilizer, this makes $A'''' = (A^{m'})_{(\Sigma)}$ large (for $m' = n^{O(\log n)})$.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Outline of proof of main theorem

Given: long stabilizer chain for $A \subset \text{Sym}_n$ with $\Sigma = \{\alpha_1, \alpha_2, \dots \alpha_r\}.$ Goal: increase length *r* of long stabilizer chain by factor > 1. (Can then recur.) By Bochert and pigeonhole, $A' = (A^m)_{\Sigma}, m = n^{O(1)}$, acts

like $\operatorname{Sym}(\Sigma')$ ($\Sigma' \subset \Sigma$ large) on Σ . We let A' act on $A'' = A_{(\Sigma)} \subset \operatorname{Sym}_n|_{(\Sigma)}$ by conjugation.

 $\langle A'' \rangle$ 2-transitive on $[n] - \Sigma$ (or almost?) Then there is a small subset $A''' \subset (A'')^{n^{O(\log n)}}$ with $\langle A''' \rangle$ 2-transitive. (Proof by random walks again!) By orbit-stabilizer, this makes $A'''' = (A^{m'})_{(\Sigma)}$ large (for $m' = n^{O(\log n)})$.

Apply splitting lemma to prolong $\alpha_1, \alpha_2, \ldots, \alpha_r$; done.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Outline of proof, continued: the other induction

$\langle A'' \rangle$ not 2-transitive on $[n] - \Sigma$ (or almost?)

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Outline of proof, continued: the other induction

 $\langle A'' \rangle$ not 2-transitive on $[n] - \Sigma$ (or almost?) Then $\langle A'' \rangle$ decomposes into permutation groups on $n' \leq 0.9n$ elements; by induction, the diameter is small.

H. A. Helfgott and Á. Seress

Introduction

Alternating groups

Proof ideas

Outline of proof, continued: the other induction

 $\langle A'' \rangle$ not 2-transitive on $[n] - \Sigma$ (or almost?) Then $\langle A'' \rangle$ decomposes into permutation groups on $n' \leq 0.9n$ elements; by induction, the diameter is small. By (Babai, Seress 1988), there is an element *g* of small support – use that as an existence statement; can reach *g* by small diameter. Done.