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K3 sigma models

Consider CFT sigma model with target K3.

Spectrum:

repr. of N=4 superconformal 
algebra

Full spectrum complicated --- only known explicitly 
at special points in moduli space.



M = O(4, 20; Z)\O(4, 20; R)/O(4, R)⇥O(20, R)| {z }

⇧ ⇢ R4,20

K3 Moduli Space

Moduli space of K3 sigma models is 80 real-dimensional,  
and explicitly given as

Grassmannian, describing 
pos. def. 4d subspace discrete  

identifications

[Aspinwall, Morrison], [Aspinwall]  
[Nahm,Wendland]
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(q = e2⇡i⌧ , y = e2⇡iz)

Elliptic genus

Instead of full partition function consider  
`partial index’ = elliptic genus:

- constant over moduli space

- defines weak Jacobi form of weight w=0  
  and index m=1. [Kawai et. al.]
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BPS states

Define BPS states as subspace of the RR states 

BPS states = right-moving ground states 
(These are the states that contribute to elliptic genus.)

Then, w.r.t left-moving N=4 have decomposition

multiplicity spaces --- not  
constant over moduli space.



An = TrDn(�1)F̄

A1 = 90 = 45 + 45
A2 = 461 = 231 + 231
A3 = 1540 = 770 + 770

Indices

However, since elliptic genus is constant over moduli 
space, the indices

are constant. Explicitly: 

dims of irreps 
of M24!

[Eguchi, Ooguri, Tachikawa]
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Virtual representations

Note: similar decomposition for the lowest coefficients 
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They involve virtual representations:



Evidence 

There is by now overwhelming evidence for this  
structure: the `twining genera’ were guessed  
independently by [MRG, Hohenegger, Volpato] and  
[Eguchi, Hikami], and from them decomposition of the 
multiplicity spaces into M24 representations can be  
deduced. 

For the first 1000 or so multiplicity spaces, consistent 
decomposition was found; argument of [Gannon] 
then implies that this will be true for all multiplicity 
spaces.



Why Mathieu?

Mukai Theorem: any finite group of symplectic 
automorphisms (       fixes all three complex structures)  
of a K3 surface is isomorphic to a subgroup of the  
Mathieu group M23.

[The Mathieu group M23 is the subgroup of M24 (as a subgroup  
of the permutation group) that consists of the permutations with  
at least one 1-cycle.]

However, the symplectic automorphisms of K3 have at  
least 5 orbits on the set of 24 points: form proper  
subgroups of M23.



Conjugacy classes

16 classes with representative in M23 

1A, 2A, 3A, 4B, 5A, 6A, 7A, 7B, 8A,  
11A, 14A, 14B, 15A, 15B, 23A, 23B

10 classes with no representative in M23 

2B, 3B, 4A, 4C, 6B, 10A, 12A, 12B, 21A, 21B.

Because of this, useful to separate the conjugacy  
classes of M24 into two classes:

geometric

non-geometric



Geometrical explanation?

This geometrical point of view therefore only  
explains small part of M24 Mathieu Moonshine.

Natural idea: generalise Mukai Theorem to K3  
sigma-models. 

see also [Taormina, Wendland]



Moduli space

M = O(4, 20; Z)\O(4, 20; R)/O(4, R)⇥O(20, R)| {z }

Recall structure of moduli space:

⇧ ⇢ R4,20

Grassmannian, describing  
choice of 4-plane  

[Think of          as the even real homology; the 
sigma-model is determined by choosing a Ricci flat  
metric and B-field on K3 manifold — corresponds to  
choice of 4-plane     .]  

R4,20

⇧

discrete autos of fixed 
`charge lattice’

�4,20 ⇢ R4,20



K3 symmetries

In string theory, the real homology can be  
identified with the space of RR ground states.

Furthermore, the lattice                      is the RR charge 
lattice of the D-branes of the theory (integer homology).  

�4,20 ⇢ R4,20

The symmetries of a given K3 sigma model  
are those automorphisms of the RR charge  
lattice, i.e., elements in                 , that leave  
the 4-plane     invariant. ⇧

O(4, 20;Z)



Susy symmetries

The N=(4,4) superconformal algebra contains the 
R-symmetry

SU(2)L ⇥ SU(2)R

With respect to this symmetry, the 24 RR ground states 
decompose as 
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20 · (1,1)� (2,2)

as follows from 



Mathieu symmetries

In the context of the Mathieu symmetries, the 
(2,2) states are singlets 

The subspace     can be identified with the space 
spanned by the 4 RR ground states that transform  
as (2,2).     

⇧

⇧
Thus we are interested in K3 sigma model symmetries  
for which the automorphisms leave     pointwise  
invariant. 

�2 = �2 · 1



Susy symmetries

Because these 4 RR ground states correspond to  
the 4 spacetime supercharges, the physics  
interpretation of the above condition is that these  
are the symmetries that preserve 

spacetime supersymmetry



⇧

G⇧ ⇢ O(4, 20; Z) that fixes ⇧ pointwise

Analysis of groups

To study these groups, define  

LG = {v 2 �4,20 : g · v = v 8g 2 G}
LG =

�
LG

�?

(G ⌘ G⇧, L ⌘ �4,20)

cf. [Kondo’s proof of Mukai Thm] 

For a given sigma model characterised by     
the susy symmetry group is therefore 



Analysis of groups

    has signature (4,0) — thus       has negative signature, 
and is of rank less or equal to 20.  
⇧ LG

Regularity of sigma model:       does not contain  
any roots (vectors of length squared -2).

LG

Then can embed LG(�1) ,! ⇤L

such that action of G extends to whole Leech lattice:

[Nikulin]

G ✓ Co1 ⇢ Co0 ⌘ Aut(⇤L)



Precise description

In order to give more precise description of the 
possible symmetry groups study the subgroups 
of the Conway group that fix a sublattice of  
rank at least 4 in the Leech lattice.

The detailed analysis is quite technical, but 
using results of Curtis, Conway et.al., and Allcock 
one arrives at the following list:



(i) G = G0.G00, where G0
is a subgroup of Z11

2 ,

and G00
is a subgroup of M24

(ii) G = 5

1+2
: Z4

(iii) G = Z4
3 : A6

(iv) G = 3

1+4
: Z2.G00, where G00

is either trivial,

Z2 or Z2
2.

Classification of symmetries

The possible symmetry groups of K3 sigma models 
are given by:

[MRG,Hohenegger,Volpato]

extra-special group semi-direct product [ . normal subgroup]



Observations

(1) None of the K3 sigma-models has M24 as  
     symmetry group. 

[In case (i) only those elements of M24 appear which have at least 4    
 orbits when acting as a permutation. Thus 12B, 21A, 21B, 23A, 23B    
 never arise.]

(2) Some K3 sigma-models have symmetries that are 
      not contained in M24.

[In particular, this is the case for (ii), (iii) and (iv), as well as (i) with 
 non-trivial G’.]

(3) All symmetry groups fit inside the Conway group
[but there is no evidence for `Conway Moonshine’ in the elliptic genus.]



Existence

Provided that for any `regular’ 4-plane    , a  
non-singular K3 sigma model exists, the above 
analysis also implies that all of these cases are  
realised by some K3 sigma model. 

⇧

We have subsequently shown (see also below)  
that at least all cases (ii) — (iv) are indeed realised. 
[In case (i) obviously only those combinations should 
be realised that come from a suitable subspace    .] ⇧



Exceptional cases

Call K3 sigma model exceptional if symmetry group 
is not contained in M24.

Observation: [MRG,Volpato]

‣ Every sigma model corresponding to case (iii) & (iv)   
   is equal to  

‣ If sigma model is cyclic torus orbifold, then it 
   it is always exceptional.

‣ Every sigma model corresponding to case (ii)  
   is equal to T4/Z5

T4/Z3



K3 = T4/Zn $ T4 ⇠= K3/Z̃n

Quantum Symmetry

Basic idea of argument: K3 sigma model is cyclic 
torus orbifold if and only if it has `quantum symmetry’ 
whose orbifold is a torus.

Suppose that K3 has a symmetry g of order n, which 
satisfies level matching (= trivial multiplier phase) so  
that orbifold is consistent. 



�̃(⌧, z) =
1
n

nX

i,j=1

�gi,gj (⌧, z)

gd

Orbifold K3
Suppose that K3 has a symmetry g of order n, which 
satisfies level matching (= trivial multiplier phase) so  
that orbifold is consistent. 

By usual orbifold rules, elliptic genus of orbifold equals

twisted twining genus -- can be obtained from  
twining genus of      where d=gcd(i,j,n) by suitable 
modular transformation.



�gd(⌧, 0) = Tr24(g
d
) = constant

�gi,gj (⌧, 0) = Tr24(ggcd(i,j,n))

Orbifold theory

The orbifold is a torus theory if and only if its 
elliptic genus vanishes for z=0.

But for z=0 we have simply 

and hence 



�̃(⌧, 0) =
1
n

nX

i,j=1

Tr24(ggcd(i,j,n)) .

Orbifold theory

Thus

coincides with trace in standard 
24d rep of Conway group. 

For each conjugacy class of Conway can hence  
decide whether orbifold (if consistent) will lead to  
torus or not.



�̃(⌧, 0) = 24

�̃(⌧, 0) = 0

Conway classes

Conway group has 167 conjugacy classes, but only 
42 contain symmetries that are realised by some K3.

Of these, 31 have necessarily trivial multiplier phase 
(since trace over 24d rep non-trivial):

- 21 lead to K3, i.e. 

- 10 lead to T4, i.e. 

none of them has representative in M24

Quantum symmetry of T4-orbifold is always exceptional!



Other classes

The remaining 11 classes all lead to inconsistent  
orbifolds (=level matching not satisfied), i.e. 

�̃(⌧, 0) 6= 0, 24
except for one case that can be identified with  
a       torus orbifold. (Its quantum symmetry is also  
not inside M24.) 

‣ If sigma model is cyclic torus orbifold, then its 
   quantum symmetry is always exceptional. ✓    

Z2

[MRG, Taormina, Volpato, Wendland]



Z5

Other cases

‣ Every sigma model corresponding to case (ii)  
   is equal to T4/Z5

To prove:

note that case (ii) contains 5C class of Conway (not in M24) 
whose orbifold is a torus.

We have also constructed the asymmetric      orbifold             
explicitly and checked that it has the symmetry in case (ii).

Similarly for: 
‣ Every sigma model corresponding to case (iii) & (iv)   
   is equal to  T4/Z3 ✓    

✓    



Exceptions

However, there are also exceptional K3 sigma-models 
in case (i). Some of them are cyclic torus orbifolds, 
but some of them are not

 --- maybe non-abelian orbifolds?

More fundamentally, it would be important to  
understand what the significance of being a (cyclic)  
torus orbifolds is (if any)….



Some comments I

The above analysis applies to susy preserving 
symmetries of full CFT sigma model — however, 
elliptic genus only sees (BPS) part of the spectrum.

The symmetries of the BPS spectrum could be larger  
or smaller…

larger: not every symmetry needs to lift to full theory 
smaller: symmetry generators may not define consistent 
              operator on BPS cohomology 

T4/Z2  [e.g. for           , the twining genus of quantum symmetry 
   has formally                            …]Tr90(Q) = �102



Some comments I (ctd)

As a vector space, this cohomology is essentially the  
`BPS algebra’ of [Harvey, Moore] — which is not just a  
quotient space, but also carries algebra structure. 

Thus a natural explanation of Mathieu Moonshine  
would be if the automorphism group of the  
`BPS algebra’  was M24….

[This would also tie in nicely with the observation that 
Generalised Mathieu Moonshine behaves exactly like a  
holomorphic CFT…] [MRG, Persson, Ronellenfitsch, Volpato]



Some comments II

One difficulty with trying to work this out explicitly 
is that  at a generic point in moduli space, where  
                        , the theory does not seem to have 
any (?) non-trivial symmetries. 
dim(Dn) = |An|

On the other hand, all known CFT descriptions of K3s 
(e.g. orbifolds) sit at rather special points in moduli  
space where most multiplicity spaces are non-minimal, i.e.

dim(Dn) > |An|

How does one get rid of these additional states?

cf. [Taormina, Wendland]



Some comments III

The BPS spectrum involves virtual representations  
of M24.

[Gannon]

It is striking though that the `virtualness’ is restricted 
to the `massless’ states.

Is this the analogue of the constant term in  
Monstrous Moonshine?



Some comments III (ctd)

So should we get rid of these massless states, just 
as the      orbifold of the Leech lattice theory does 
for the case of Monstrous Moonshine?

Incidentally, in effect this is what happens when 
one considers Mathieu Moonshine from the  
perspective of mock modular forms….

Z2



Some comments IV

From the viewpoint of K3 sigma models, however, 
there is no natural reason to discard these massless 
states — in fact, they are needed for correct modular  
behaviour…

So K3 perspective is really about Jacobi forms,  
not mock modular forms…

On the other hand, mock interpretation of Mathieu 
Moonshine will probably not involve K3 (but may be 
the natural analogue of Monstrous Moonshine)…



The BIG question

The big question thus remains: 

Is Mathieu Moonshine really a K3 phenomenon, 
or is it just a property of some other structure  
associated to the weak Jacobi form       , e.g. 
the corresponding mock modular form.

�0,1


